An Optimal, Democratic Diagonalization Technique from the Singular Value Decomposition

Scott Beaver - Western Oregon University

Humboldt State University Mathematics Department Colloquium

March 26, 2009

■ We will discuss orthogonalization of a real full-rank matrix

- This can be accomplished in a variety of ways
- In introductory linear algebra courses it is typically done by way of the Gram-Schmidt procedure
- We'll focus on a very different orthogonalization method using the singular value decomposition (hereafter SVD)

Throughout, m and n will always denote natural numbers with $m \geq n$

Unless otherwise indicated, all vectors herein are interpreted as column vectors

$$
u \in \mathbb{R}^{n} \quad \Longrightarrow \quad u=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right)
$$

Definition

Let $u, v \in \mathbb{R}^{n}$. Then the inner product of u and v, written $\langle u, v\rangle$ is defined as

$$
\langle u, v\rangle:=\sum_{j=1}^{n} u_{j} v_{j}
$$

Definition

Let $u \in \mathbb{R}^{n}$. The (Euclidean) norm of u is defined as

$$
\|u\|_{2}:=\left(\sum_{j=1}^{n} u_{j}^{2}\right)^{1 / 2}=\sqrt{\langle u, u\rangle}
$$

A vector $u \in \mathbb{R}^{n}$ is a unit vector or normal if

$$
\|u\|_{2}=1
$$

Definition

Two vectors $u, v \in \mathbb{R}^{n}$ are orthogonal if

$$
\langle u, v\rangle=0
$$

If u, v are each orthogonal and normal, then we say u and v are orthonormal

To avoid subscript ambiguity when considering a finite collection of vectors, denote by $u_{i *}$ the $i^{\text {th }}$ member of the collection

Definition

A collection of nonzero vectors $\left\{u_{1 *}, \ldots, u_{n *}\right\}$ is orthonormal if $\left\langle u_{i *}, u_{j *}\right\rangle=0$ when $i \neq j$ and if each $u_{i *}$ is of unit length

- The orthogonality of the $u_{i *}$'s imply that the $u_{i *}$'s are linearly independent - none of them can be written as a linear combination of any of the others
- Further, any nonzero vector in \mathbb{R}^{n} can be assembled as a linear combination (with coefficients not all zero) of the $u_{i *}$'s

These two facts, along with normality of the $u_{* i}$'s, mean that the $u_{i *}$'s form an orthonormal basis for \mathbb{R}^{n}

Though vectors are our building blocks, the primary focus of our discussion is the idea of matrix which is an extension of the idea of ordered n-tuples of real numbers (vectors), but with two directions of order, loosely speaking

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & & \ddots & \vdots \\
a_{n 1} & \cdots & \cdots & a_{n n} \\
\vdots & & & \vdots \\
a_{m 1} & \cdots & \cdots & a_{m n}
\end{array}\right)
$$

Matrices are essentially the concatenation of vectors of identical length

Definition

Let $A=\left(a_{i j}\right) \in \mathbb{R}^{m \times n}$. The transpose A^{T} of A is the matrix $\left(a_{j i}\right) \in \mathbb{R}^{n \times m}$.

Example

$$
\left(\begin{array}{rrr}
1 & 0 & 3 \\
2 & -1 & -4
\end{array}\right)^{T}=\left(\begin{array}{rr}
1 & 2 \\
0 & -1 \\
3 & -4
\end{array}\right)
$$

Definition

(Matrix Multiplication) Let $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$. Then the product $A B$ is defined element-wise as

$$
(A B)_{i j}:=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

and the matrix $A B \in \mathbb{R}^{m \times p}$.

The n-dimensional identity matrix is

$$
I_{n}=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & & \vdots \\
\vdots & & \ddots & \\
0 & \cdots & & 1
\end{array}\right)
$$

We'll write I for the identity matrix when the size is clear from the context.

When $m \geq n$, it is possible that the columns of A, denoted $A_{i}, i=1, \ldots, n$, can form a linearly independent set

Any linearly independent set of vectors can be transformed into an orthonormal set

This process is called orthogonalization

Definition

A square matrix Q is orthogonal if $Q^{T} Q=I$.

Definition

Let $A \in \mathbb{R}^{m \times n}$. Then the (full) SVD of A is $A=U \Sigma V^{T}=$

$$
\left(\begin{array}{l}
\\
U_{1}
\end{array}\left|\begin{array}{l}
\\
\\
\\
\end{array}\right| \cdots\left|U_{m}\right|\left(\begin{array}{cccc}
\sigma_{1} & 0 & \cdots & 0 \\
0 & \sigma_{2} & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & \cdots & \cdots & \sigma_{n} \\
0 & \cdots & \cdots & 0 \\
\vdots & & & \vdots \\
0 & \cdots & \cdots & 0
\end{array}\right)\left(\begin{array}{c}
V_{1}^{T} \\
\hline V_{2}^{T} \\
\vdots \\
\hline V_{n}^{T}
\end{array}\right) .\right.
$$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices and Σ is diagonal. The σ_{i} 's are the singular values of A, by convention arranged in nonincreasing order

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0
$$

- The columns of U are termed left singular vectors of A; the columns of V are called right singular vectors of A
- Since U and V are orthogonal matrices, the columns of each form orthonormal bases for \mathbb{R}^{m} and \mathbb{R}^{n} respectively
- We can use these bases to illuminate the fundamental property of the SVD

For the equation $A x=b$, the SVD makes every matrix diagonal by selecting the right bases for the range and domain

Let $b, x \in \mathbb{R}^{n}$ such that $A x=b$, and expand b in the columns of U and x in the columns of V to get

$$
b^{\prime}:=U^{T} b, \quad x^{\prime}:=V^{T} x
$$

so that

$$
\begin{aligned}
b=A x \quad \Longleftrightarrow \quad U^{T} b & =U^{T} A x \\
& =U^{T}\left(U \Sigma V^{T}\right) x \\
& =\Sigma x^{\prime}
\end{aligned}
$$

or

$$
b=A x \quad \Longleftrightarrow \quad b^{\prime}=\Sigma x^{\prime}
$$

Let $y \in \mathbb{R}^{n}$, then the action of left multiplication of y by A (computing $z:=A y$) is decomposed by the SVD into three steps

$$
\begin{aligned}
z & =A y & & \\
& =\left(U \Sigma V^{T}\right) y & & =U \Sigma\left(V^{T} y\right) \\
& =U \Sigma c & & \left(c:=V^{T} y\right) \\
& =U w & & (w:=\Sigma c)
\end{aligned}
$$

Let $y \in \mathbb{R}^{n}$, then the action of left multiplication of y by A (computing $z:=A y$) is decomposed by the SVD into three steps

$$
\begin{aligned}
z & =A y & & \\
& =\left(U \Sigma V^{T}\right) y & & =U \Sigma\left(V^{T} y\right) \\
& =U \Sigma c & & \left(c:=V^{T} y\right) \\
& =U w & & (w:=\Sigma c)
\end{aligned}
$$

- $c=V^{T} y$ is the analysis step, in which the components of y, in the basis of \mathbb{R}^{n} given by the columns of V, are computed

Let $y \in \mathbb{R}^{n}$, then the action of left multiplication of y by A (computing $z:=A y$) is decomposed by the SVD into three steps

$$
\begin{aligned}
z & =A y & & \\
& =\left(U \Sigma V^{T}\right) y & & =U \Sigma\left(V^{T} y\right) \\
& =U \Sigma c & & \left(c:=V^{T} y\right) \\
& =U w & & (w:=\Sigma c)
\end{aligned}
$$

- $c=V^{T} y$ is the analysis step, in which the components of y, in the basis of \mathbb{R}^{n} given by the columns of V, are computed
- $w=\Sigma c$ is the scaling step in which the components $c_{i}, i \in\{1,2, \ldots, n\}$ are dilated

Let $y \in \mathbb{R}^{n}$, then the action of left multiplication of y by A (computing $z:=A y$) is decomposed by the SVD into three steps

$$
\begin{aligned}
z & =A y & & \\
& =\left(U \Sigma V^{T}\right) y & & =U \Sigma\left(V^{T} y\right) \\
& =U \Sigma c & & \left(c:=V^{T} y\right) \\
& =U w & & (w:=\Sigma c)
\end{aligned}
$$

- $c=V^{T} y$ is the analysis step, in which the components of y, in the basis of \mathbb{R}^{n} given by the columns of V, are computed
- $w=\Sigma c$ is the scaling step in which the components $c_{i}, i \in\{1,2, \ldots, n\}$ are dilated
- $z=U w$ is the synthesis step, in which z is assembled by scaling each of the \mathbb{R}^{n}-basis vectors U_{i} by w_{i} and summing

So how do we compute the matrices U, Σ, and V in the SVD of some square $A \in \mathbb{R}^{n \times n}$?

We have that $\quad V^{T} V=I=U^{T} U, \quad A=U \Sigma V^{T} \quad$ yields

$$
\begin{align*}
A V & =U \Sigma \tag{1}\\
U^{T} A & =\Sigma V^{T} \\
A^{T} U & =V \Sigma \tag{2}
\end{align*}
$$

Or, for each $j \in\{1,2, \ldots, n\}$,

$$
\begin{equation*}
A v_{j}=\sigma_{j} u_{j} \tag{3}
\end{equation*}
$$

Now we multiply Equation (3) by A^{T} to get

$$
\begin{aligned}
A^{T} A v_{j} & =A^{T} \sigma_{j} u_{j} \\
& =\sigma_{j} A^{T} u_{j} \\
& =\sigma_{j}^{2} v_{j} \quad \text { Ву (2) }
\end{aligned}
$$

So the v_{j} 's are the eigenvectors of $A^{T} A$ with corresponding eigenvalues σ_{j}^{2}

If we denote the $i^{\text {th }}$ row of A by ${ }_{i} A$ and the $j^{\text {th }}$ column of B by B_{j} we have

$$
(A B)_{i j}:=\left\langle\left({ }_{i} A\right)^{T}, B_{j}\right\rangle={ }_{i} A B_{j}
$$

Note that $\quad\left(A^{T} A\right)_{i j}={ }_{i} A A_{j} \quad$ or, more succinctly

$$
A^{T} A=\left(\begin{array}{cccc}
{ }_{1} A_{1} & { }_{1} A_{2} & \cdots & { }_{1} A_{n} \tag{4}\\
{ }_{2} A_{1} & { }_{2} A_{2} & & \vdots \\
\vdots & & \ddots & \\
{ }_{n} A_{1} & \cdots & & { }_{n} A_{n}
\end{array}\right)
$$

$A^{T} A$ is a matrix of inner products of columns of A-often called the Gram matrix of A

We'll see the Gram matrix later when considering an application

Let's do an example

$$
\begin{gathered}
A=\left(\begin{array}{rrr}
1 & 0 & -1 \\
1 & 1 & 0 \\
-1 & 0 & -1
\end{array}\right) \quad \Longrightarrow \quad A^{T}=\left(\begin{array}{rrr}
1 & 1 & -1 \\
0 & 1 & 0 \\
-1 & 0 & -1
\end{array}\right) \\
\\
\Longrightarrow \quad A^{T} A=\left(\begin{array}{lll}
3 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
\end{gathered}
$$

To find the eigenvectors ν and the corresponding eigenvalues λ for $A^{T} A$, we solve

$$
A^{T} A v=\lambda v \quad \Longleftrightarrow \quad\left(A^{T} A-\lambda I\right) \nu=0
$$

for λ and v. The standard technique for finding such λ and v is to first seek the λ that make singular the matrix

$$
A^{T} A-\lambda I=\left(\begin{array}{lll}
3 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)-\left(\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right)=\left(\begin{array}{rrr}
3-\lambda & 1 & 0 \\
1 & 1-\lambda & 0 \\
0 & 0 & 2-\lambda
\end{array}\right)
$$

This is typically accomplished by solving $\operatorname{det}\left(A^{T} A-\lambda I\right)=0$:

$$
\begin{array}{rrr}
3-\lambda & 1 & 0 \\
1 & 1-\lambda & 0 \\
0 & 0 & 2-\lambda
\end{array}|=(3-\lambda)(1-\lambda)(2-\lambda)-2+\lambda|+\quad \begin{aligned}
& \\
&
\end{aligned}
$$

which is solved by

$$
\begin{aligned}
& \lambda_{1}=\sigma_{1}^{2}=2+\sqrt{2} \\
& \lambda_{2}=\sigma_{2}^{2}=2 \\
& \lambda_{3}=\sigma_{3}^{2}=2-\sqrt{2}
\end{aligned}
$$

Now (as a gentle first step) we find a vector ν_{2} so that $A^{T} A \nu_{2}=2 \nu_{2}$; we do this by finding a basis for the nullspace of

$$
A^{T} A-2 I=\left(\begin{array}{rrr}
3-2 & 1 & 0 \\
1 & 1-2 & 0 \\
0 & 0 & 2-2
\end{array}\right)=\left(\begin{array}{rrr}
1 & 1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Certainly any vector of the form $\left(\begin{array}{l}0 \\ 0 \\ t\end{array}\right), t \in \mathbb{R} \backslash\{0\}$, is mapped to zero
by $A^{T} A-2 I$, so we are free to set $v_{2}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$

To find v_{1} we find a basis for the nullspace of

$$
\begin{aligned}
& A^{T} A-(2+\sqrt{2}) I=\left(\begin{array}{rrr}
1-\sqrt{2} & 1 & 0 \\
1 & -1-\sqrt{2} & 0 \\
0 & 0 & -\sqrt{2}
\end{array}\right) \\
& \text { which row-reduces to }\left(\begin{array}{rrrr}
1-\sqrt{2} & 1 & 0 \\
0 & 0 & -\sqrt{2} \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

So any vector of the form $\left(\begin{array}{c}s \\ (-1+\sqrt{2}) s \\ 0\end{array}\right), s \in \mathbb{R} \backslash\{0\}$, is mapped to the zero vector by $A^{T} A-(2+\sqrt{2}) I$

Thus $v_{1}^{\prime}:=\left(\begin{array}{c}1 \\ -1+\sqrt{2} \\ 0\end{array}\right)$ spans the nullspace of $A^{T} A-\lambda_{1} I$, but $\left\|v_{1}^{\prime}\right\| \neq 1$

So we set $v_{1}=\frac{v_{1}^{\prime}}{\left\|v_{1}^{\prime}\right\|}=\frac{1}{\sqrt{4-2 \sqrt{2}}}\left(\begin{array}{c}1 \\ -1+\sqrt{2} \\ 0\end{array}\right)$

We could find ν_{3} in a similar manner, but in this particular case there's a quicker way...

$$
v_{3}=\left(\begin{array}{c}
-\left(\nu_{1}\right)_{2} \\
\left(\nu_{1}\right)_{1} \\
0
\end{array}\right)=\frac{1}{\sqrt{4-2 \sqrt{2}}}\left(\begin{array}{c}
1-\sqrt{2} \\
1 \\
0
\end{array}\right)
$$

Certainly $\nu_{3} \perp \nu_{2}$ and by construction $\nu_{3} \perp \nu_{1}$ - recall the theorem from linear algebra symmetric matrices must have orthogonal eigenvectors

We could find ν_{3} in a similar manner, but in this particular case there's a quicker way...

$$
v_{3}=\left(\begin{array}{c}
-\left(\nu_{1}\right)_{2} \\
\left(\nu_{1}\right)_{1} \\
0
\end{array}\right)=\frac{1}{\sqrt{4-2 \sqrt{2}}}\left(\begin{array}{c}
1-\sqrt{2} \\
1 \\
0
\end{array}\right)
$$

Certainly $\nu_{3} \perp \nu_{2}$ and by construction $\nu_{3} \perp \nu_{1}$ - recall the theorem from linear algebra symmetric matrices must have orthogonal eigenvectors

- Finally, the easy part: $A=U \Sigma V^{T} \quad \Longrightarrow \quad U=A V \Sigma^{-1}$

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & 1 & 0 \\
-1 & 0 & -1
\end{array}\right) \quad \Sigma=\left(\begin{array}{ccc}
\sqrt{2+\sqrt{2}} & 0 & 0 \\
0 & \sqrt{2} & 0 \\
0 & 0 & \sqrt{2-\sqrt{2}}
\end{array}\right) \\
U=\left(\begin{array}{ccc}
\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
-\frac{1}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{2}
\end{array}\right) \quad V^{T}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{4-2 \sqrt{2}}} & \frac{-1+\sqrt{2}}{\sqrt{4-2 \sqrt{2}}} & 0 \\
0 & 0 & 1 \\
\frac{1-\sqrt{2}}{\sqrt{4-2 \sqrt{2}}} & \frac{1}{\sqrt{4-2 \sqrt{2}}} & 0
\end{array}\right)
\end{gathered}
$$

The columns of A in the unit sphere

The columns of U in the unit sphere

The columns of V in the unit sphere

The columns of Σ in its ellipsoid

- For nonsingular A, the matrix $L:=U V^{T}$ is called the symmetric or Löwdin orthogonalization of the matrix A
- L is unique since any sequence of sign choices for the columns of V determines a sequence of signs for the columns of U

■ Like Gram-Schmidt orthogonalization, it takes as input a linearly independent set (the columns of A) and outputs an orthonormal set

■ (Classical) Gram-Schmidt is unstable due to repeated subtractions; Modifed Gram-Schmidt remedies this

- An additional deficiency of Gram-Schmidt is that it requires a choice of an initial starting vector

■ With some effort we can make an optimal choice

■ But occasionally we want to disturb the original set of vectors as little as possible

Definition

The Frobenius inner product $A: B$ of $A, B \in \mathbb{R}^{m \times n}$ is

$$
\begin{equation*}
A: B:=\sum_{i, j=1}^{n} A_{i j} B_{i j}=\operatorname{tr}\left(A^{T} B\right) . \tag{5}
\end{equation*}
$$

The norm induced by the Frobenius inner product is the Frobenius norm:

$$
\begin{equation*}
\|A\|_{F}:=\sqrt{A: A}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j}^{2}\right)^{1 / 2} \tag{6}
\end{equation*}
$$

which is just the Euclidean norm on the space $\mathbb{R}^{m \times n}$ (viewed as $\mathbb{R}^{m n}$.

- The Frobenius inner product satisfies the Cauchy-Schwarz inequality

$$
\begin{equation*}
\left|\operatorname{tr}\left(A^{T} B\right)\right| \leq\|A\|_{F}\|B\|_{F} . \tag{7}
\end{equation*}
$$

Equality holds as expected, when $A=c B, c \in \mathbb{R}$.

- This equation permits us to associate an Euclidean geometry with $\mathbb{R}^{m \times n}$, augmenting its algebraic structures and the Euclidean geometry of the column space.

■ In particular we can find "angles" between matrices by the familiar-looking

$$
\begin{equation*}
\cos \theta=\frac{\operatorname{tr}\left(A^{T} B\right)}{\|A\|_{F}\|B\|_{F}} \tag{8}
\end{equation*}
$$

where we choose $\theta \in(-\pi, \pi]$

- We wish to find, for a given $A \in \mathbb{R}^{n \times n}$, the minimally-distant orthogonal $Q \in \mathbb{R}^{n \times n}$, measured by $\|A-Q\|_{F}$
- A nice way of simultaneously seeing what the solution must be and proving that it is correct is by minimizing the magnitude of the angle θ between A and Q over all orthogonal Q. Let the SVD of A be $U \Sigma V^{T}$. We have

$$
\begin{align*}
\cos \theta & =\frac{A: Q}{\|A\|_{F}\|Q\|_{F}}=\frac{\operatorname{tr}\left(A^{T} Q\right)}{n\|A\|_{F}} \\
& =\frac{\operatorname{tr}\left(V \Sigma U^{T} Q\right)}{n\|A\|_{F}}=\frac{\operatorname{tr}\left(\Sigma U^{T} Q V\right)}{n\|A\|_{F}} \\
& =\frac{\sum_{i=1}^{n} \sigma_{i}\left(U^{T} Q V\right)_{i i}}{n\|A\|_{F}} . \tag{9}
\end{align*}
$$

This expression leads to our main theorem

Theorem

Over all orthogonal matrices $Q \in \mathbb{R}^{n \times n},\|A-Q\|_{F}$ is minimized when $Q=L$.

The proof is sufficiently elementary as to be included in a semester-long linear algebra course

Proof.

- Let Q be orthogonal, and denote $Y:=U^{T} Q V$, which is orthogonal with diagonal elements $Y_{i i}, i=1, \ldots, n$.

Proof.

- Let Q be orthogonal, and denote $Y:=U^{T} Q V$, which is orthogonal with diagonal elements $Y_{i i}, i=1, \ldots, n$.
■ Since the denominator of $\frac{\sum_{i=1}^{n} \sigma_{i}\left(U^{T} Q V\right)_{i i}}{n\|A\|_{F}}$ contains only positive constants, the task is to maximize $\sum_{i=1}^{n} \sigma_{i} Y_{i i}$.

Proof.

- Let Q be orthogonal, and denote $Y:=U^{T} Q V$, which is orthogonal with diagonal elements $Y_{i i}, i=1, \ldots, n$.
■ Since the denominator of $\frac{\sum_{i=1}^{n} \sigma_{i}\left(U^{T} Q V\right)_{i i}}{n\|A\|_{F}}$ contains only positive constants, the task is to maximize $\sum_{i=1}^{n} \sigma_{i} Y_{i i}$.
- By construction, the σ_{i} 's are all positive, and the orthogonality of Y demands that $\left|Y_{i i}\right| \leq 1$, so the sum is maximized when all of the $Y_{i i}$'s equal one, which occurs if and only if $Y=U^{T} Q V=I_{n}$.

Proof.

- Let Q be orthogonal, and denote $Y:=U^{T} Q V$, which is orthogonal with diagonal elements $Y_{i i}, i=1, \ldots, n$.
■ Since the denominator of $\frac{\sum_{i=1}^{n} \sigma_{i}\left(U^{T} Q V\right)_{i i}}{n\|A\|_{F}}$ contains only positive constants, the task is to maximize $\sum_{i=1}^{n} \sigma_{i} Y_{i i}$.
■ By construction, the σ_{i} 's are all positive, and the orthogonality of Y demands that $\left|Y_{i i}\right| \leq 1$, so the sum is maximized when all of the $Y_{i i}$'s equal one, which occurs if and only if $Y=U^{T} Q V=I_{n}$.
- Since U and V are orthogonal, the conclusion $Q=L=U V^{T}$ is immediate.

$$
A=\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & 1 & 0 \\
-1 & 0 & -1
\end{array}\right) \quad L=\left(\begin{array}{ccc}
\frac{\frac{\sqrt{2}}{2}}{\sqrt{4-2 \sqrt{2}}} & \frac{-1+\frac{\sqrt{2}}{2}}{\sqrt{4-2 \sqrt{2}}} & -\frac{1}{\sqrt{2}} \\
\frac{\frac{2}{\sqrt{2}}-1}{\sqrt{4-2 \sqrt{2}}} & \frac{1}{\sqrt{4-2 \sqrt{2}}} & 0 \\
\frac{-\frac{\sqrt{2}}{2}}{\sqrt{4-2 \sqrt{2}}} & \frac{1-\frac{\sqrt{2}}{\sqrt{4-2 \sqrt{2}}}}{\sqrt{\sqrt{2}}}
\end{array}\right)
$$

The columns of A and of L with the unit sphere

An alternative interpretation of \boldsymbol{L}

- It can be shown that if A is nonsingular, then $L=\left(A^{T} A\right)^{-1 / 2} A$

■ This is a generalization of the algorithm for producing a unit vector from an arbitrary nonzero vector in \mathbb{R}^{n}

■ Useful for an application to wireless communications

■ Orthogonal-Frequency-Division-Multiplexing (OFDM) is a candidate for the 4 G wireless standard

- The carrier waves are orthogonal in the sense of an inner product defined by continuous-time integration
- But the carriers are square-waves, and require a "guard-interval" to preclude overlap due to multipath propagation
- Square-waves also have quite poor frequency-domain properties, so are susceptible to adjacent carrier interference due to the Doppler effect if present
- Gaussian waves are optimally robust regarding frequency interference but are not orthogonal

■ Time-shifted and frequency-shifted Gaussians can be represented on a lattice in the time-frequency plane

- The Gram matrix (denoted R) of inner products of modulated waves is a strictly positive definite matrix
- This permits one to calculate $R^{-1 / 2}$ (via Taylor series or Newton's Algorithm, for example)

Let g be some function, and $T, F \in \mathbb{R}^{+}$. Denote $g_{i, j}:=g(t-i T) e^{2 \pi i j F}$.

Theorem

If $g_{i, j}$ generates a linearly independent for its closed linear span, then

$$
L \ddot{O}(g):=\sum_{i, j, 0,0} R_{i, j}^{-1 / 2} g_{i, j}
$$

generates an orthonormal system for that span. Furthermore, ifg is a gaussian then Lö(g) is optimally robust against time- and frequency-dispersion.

Consider the 320-by-200-pixel image below

Probably a clown

- This is stored as a 320×200 matrix of grayscale values, between 0 (black) and 1 (white), denoted by $A_{\text {clown }}$
- We can take the SVD of $A_{\text {clown }}$
- Replacing the smallest $n-k$ singular values by 0 in the SVD of $A_{\text {clown }}$ yields the best rank- k approximation, denoted $A_{\text {clown }}^{(k)}$, to $A_{\text {clown }}$ as measured by the Frobenius norm
- Storage required for $A_{\text {clown }}^{(k)}$ is a total of $(320+200) \cdot k$ bytes for storing $\sigma_{1} u_{1}$ through $\sigma_{k} u_{k}$ and ν_{1} through ν_{k}
- $320 \cdot 200=64,000$ bytes required to store $A_{\text {clown }}$ explicitly

Now consider the rank-20 approximation to the original image, and the difference between the images

Most of a clown, with the missing parts
The original image took 64 kb , while the low-rank approximation required $(320+200) \cdot 20=10.4 \mathrm{~kb}$, a compression ratio of .1625

Scott Beaver - Western Oregon University

beavers@wou.edu

www.wou.edu/~beavers

