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Overview

We will discuss orthogonalization of a real full-rank matrix

This can be accomplished in a variety of ways

In introductory linear algebra courses it is typically done by
way of the Gram-Schmidt procedure

We’ll focus on a very different orthogonalization method using
the singular value decomposition (hereafter SVD)
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Preliminaries

Throughout, m and n will always denote natural numbers with
m ≥ n

Unless otherwise indicated, all vectors herein are interpreted as
column vectors

u ∈Rn =⇒ u =


u1

u2
...

un


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Preliminaries

Definition

Let u, v ∈Rn . Then the inner product of u and v , written 〈u, v〉 is
defined as

〈u, v〉 :=
n∑

j=1
u j v j

Definition

Let u ∈Rn . The (Euclidean) norm of u is defined as

‖u‖2 :=
(

n∑
j=1

u2
j

)1/2

=
√
〈u ,u〉

A vector u ∈Rn is a unit vector or normal if

‖u‖2 = 1
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Preliminaries

Definition

Two vectors u, v ∈Rn are orthogonal if

〈u, v〉 = 0

If u, v are each orthogonal and normal, then we say u and v are
orthonormal
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Preliminaries

To avoid subscript ambiguity when considering a finite collection of
vectors, denote by ui∗ the i th member of the collection

Definition

A collection of nonzero vectors {u1∗, . . . ,un∗} is orthonormal if
〈ui∗,u j∗〉 = 0 when i 6= j and if each ui∗ is of unit length

The orthogonality of the ui∗’s imply that the ui∗’s are linearly
independent - none of them can be written as a linear
combination of any of the others

Further, any nonzero vector in Rn can be assembled as a linear
combination (with coefficients not all zero) of the ui∗’s

These two facts, along with normality of the u∗i ’s, mean that the
ui∗’s form an orthonormal basis for Rn
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Preliminaries

Though vectors are our building blocks, the primary focus of our
discussion is the idea of matrix which is an extension of the idea of
ordered n-tuples of real numbers (vectors), but with two directions
of order, loosely speaking



a11 a12 · · · a1n

a21 a22 · · · a2n
...

. . .
...

an1 · · · · · · ann
...

...
am1 · · · · · · amn


Matrices are essentially the concatenation of vectors of identical
length
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Preliminaries

Definition

Let A = (ai j ) ∈Rm×n . The transpose AT of A is the matrix
(a j i ) ∈Rn×m .

Example

(
1 0 3
2 −1 −4

)T

=
 1 2

0 −1
3 −4


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Preliminaries

Definition

(Matrix Multiplication) Let A ∈Rm×n , B ∈Rn×p . Then the product
AB is defined element-wise as

(AB)i j :=
n∑

k=1
ai k bk j

and the matrix AB ∈ Rm×p .
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Preliminaries

The n-dimensional identity matrix is

In =


1 0 · · · 0

0 1
...

...
. . .

0 · · · 1



We’ll write I for the identity matrix when the size is clear from the
context.
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Preliminaries

When m ≥ n, it is possible that the columns of A, denoted
Ai , i = 1, . . . ,n, can form a linearly independent set

Any linearly independent set of vectors can be transformed into an
orthonormal set

This process is called orthogonalization

Definition

A square matrix Q is orthogonal if QT Q = I .
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Structure of the SVD

Definition

Let A ∈Rm×n . Then the (full) SVD of A is A =UΣV T =


U1 U2 · · · Um





σ1 0 · · · 0
0 σ2 · · · 0
...

. . .
...

0 · · · · · · σn

0 · · · · · · 0
...

...
0 · · · · · · 0




V T

1

V T
2
...

V T
n

 .

where U ∈Rm×m and V ∈Rn×n are orthogonal matrices and Σ is
diagonal. The σi ’s are the singular values of A, by convention
arranged in nonincreasing order

σ1 ≥σ2 ≥ ·· · ≥σn ≥ 0
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Structure of the SVD

The columns of U are termed left singular vectors of A; the
columns of V are called right singular vectors of A

Since U and V are orthogonal matrices, the columns of each
form orthonormal bases for Rm and Rn respectively

We can use these bases to illuminate the fundamental property
of the SVD

For the equation Ax = b, the SVD makes every matrix diagonal by
selecting the right bases for the range and domain
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Structure of the SVD

Let b, x ∈Rn such that Ax = b, and expand b in the columns of U
and x in the columns of V to get

b′ :=U T b, x ′ :=V T x

so that

b = Ax ⇐⇒ U T b = U T Ax

= U T (UΣV T )x

= Σx ′

or
b = Ax ⇐⇒ b′ =Σx ′
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Structure of the SVD

Let y ∈Rn , then the action of left multiplication of y by A
(computing z := Ay) is decomposed by the SVD into three steps

z = Ay

= (UΣV T ) y = UΣ(V T y)

= UΣc (c :=V T y)

= U w (w :=Σc)

c =V T y is the analysis step, in which the components of y , in
the basis of Rn given by the columns of V , are computed

w =Σc is the scaling step in which the components
ci , i ∈ {1,2, . . . ,n} are dilated

z =U w is the synthesis step, in which z is assembled by scaling
each of the Rn-basis vectors Ui by wi and summing
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Computation of the SVD

So how do we compute the matrices U ,Σ, and V in the SVD of some
square A ∈Rn×n ?

We have that V T V = I =U T U , A =UΣV T yields

AV = UΣ (1)

U T A = ΣV T

AT U = V Σ (2)

Or, for each j ∈ {1,2, . . . , n},

Av j =σ j u j (3)
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Computation of the SVD

Now we multiply Equation (3) by AT to get

AT Av j = ATσ j u j

= σ j AT u j

= σ2
j v j By (2)

So the v j ’s are the eigenvectors of AT A with corresponding
eigenvalues σ2

j
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Computation of the SVD

If we denote the i th row of A by i A and the j th column of B by B j we
have

(AB)i j := 〈 (i A)T , B j 〉 = i AB j

Note that (AT A)i j = i A A j or, more succinctly

AT A =


1 A1 1 A2 · · · 1 An

2 A1 2 A2
...

...
. . .

n A1 · · · n An

 (4)

AT A is a matrix of inner products of columns of A - often called the
Gram matrix of A

We’ll see the Gram matrix later when considering an application
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Computation of the SVD

Let’s do an example

A =
 1 0 −1

1 1 0
−1 0 −1

 =⇒ AT =
 1 1 −1

0 1 0
−1 0 −1



=⇒ AT A =
 3 1 0

1 1 0
0 0 2


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Computation of the SVD

To find the eigenvectors v and the corresponding eigenvalues λ for
AT A, we solve

AT Av =λv ⇐⇒ (AT A−λI )v = 0

for λ and v . The standard technique for finding such λ and v is to
first seek the λ that make singular the matrix

AT A−λI =
 3 1 0

1 1 0
0 0 2

−
 λ 0 0

0 λ 0
0 0 λ

=
 3−λ 1 0

1 1−λ 0
0 0 2−λ


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Computation of the SVD

This is typically accomplished by solving det (AT A−λI ) = 0 :∣∣∣∣∣∣
3−λ 1 0

1 1−λ 0
0 0 2−λ

∣∣∣∣∣∣ = (3−λ)(1−λ)(2−λ)−2+λ

= −λ3 +6λ2 −10λ+4 = 0

which is solved by

λ1 = σ2
1 = 2+p

2

λ2 = σ2
2 = 2

λ3 = σ2
3 = 2−p

2
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Computation of the SVD

Now (as a gentle first step) we find a vector v2 so that AT Av2 = 2v2;
we do this by finding a basis for the nullspace of

AT A−2I =
 3−2 1 0

1 1−2 0
0 0 2−2

 =
 1 1 0

1 −1 0
0 0 0



Certainly any vector of the form

0
0
t

 , t ∈R\ {0}, is mapped to zero

by AT A−2I , so we are free to set v2 =
0

0
1


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Computation of the SVD

To find v1 we find a basis for the nullspace of

AT A− (2+
p

2)I =

 1−p
2 1 0
1 −1−p

2 0
0 0 −p2



which row-reduces to

 1−p
2 1 0
0 0 −p2
0 0 0



So any vector of the form

 s
(−1+p

2)s
0

 , s ∈R\ {0}, is mapped to

the zero vector by AT A− (2+p
2)I
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Computation of the SVD

Thus v ′
1 :=

 1
−1+p

2
0

 spans the nullspace of AT A−λ1I , but

‖v ′
1‖ 6= 1

So we set v1 =
v ′

1

‖v ′
1‖

= 1√
4−2

p
2

 1
−1+p

2
0


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Computation of the SVD

We could find v3 in a similar manner, but in this particular case
there’s a quicker way...

v3 =
 −(v1)2

(v1)1

0

= 1√
4−2

p
2

 1−p
2

1
0


Certainly v3 ⊥ v2 and by construction v3 ⊥ v1 - recall the theorem
from linear algebra symmetric matrices must have orthogonal
eigenvectors

Finally, the easy part: A =UΣV T =⇒ U = AV Σ−1
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Computation of the SVD

A =


1 0 −1

1 1 0

−1 0 −1

 Σ=



√
2+p

2 0 0

0
p

2 0

0 0
√

2−p
2



U =



1

2
− 1p

2
−1

2

1p
2

0
1p
2

−1

2
− 1p

2

1

2


V T =



1√
4−2

p
2

−1+p
2√

4−2
p

2
0

0 0 1

1−p
2√

4−2
p

2

1√
4−2

p
2

0


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Computation of the SVD

Figures

The columns of A in the unit sphere
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Computation of the SVD

Figures

The columns of U in the unit sphere
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Computation of the SVD

Figures

The columns of V in the unit sphere
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Computation of the SVD

Figures

The columns of Σ in its ellipsoid



An Optimal, Democratic Diagonalization Technique from the Singular Value Decomposition

Symmetric Orthogonalization

For nonsingular A, the matrix L :=UV T is called the symmetric
or Löwdin orthogonalization of the matrix A

L is unique since any sequence of sign choices for the columns
of V determines a sequence of signs for the columns of U

Like Gram-Schmidt orthogonalization, it takes as input a
linearly independent set (the columns of A) and outputs an
orthonormal set
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Symmetric Orthogonalization

(Classical) Gram-Schmidt is unstable due to repeated
subtractions; Modifed Gram-Schmidt remedies this

An additional deficiency of Gram-Schmidt is that it requires a
choice of an initial starting vector

With some effort we can make an optimal choice

But occasionally we want to disturb the original set of vectors
as little as possible
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Symmetric Orthogonalization

Definition

The Frobenius inner product A : B of A,B ∈Rm×n is

A : B :=
n∑

i , j=1
Ai j Bi j = tr(AT B). (5)

The norm induced by the Frobenius inner product is the Frobenius
norm:

‖A‖F :=
p

A : A =
(

m∑
i=1

n∑
j=1

A2
i j

)1/2

(6)

which is just the Euclidean norm on the space Rm×n (viewed as
Rmn).
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Symmetric Orthogonalization

The Frobenius inner product satisfies the Cauchy-Schwarz
inequality

|tr(AT B)| ≤ ‖A‖F‖B‖F . (7)

Equality holds as expected, when A = cB , c ∈R.

This equation permits us to associate an Euclidean geometry
with Rm×n , augmenting its algebraic structures and the
Euclidean geometry of the column space.

In particular we can find “angles” between matrices by the
familiar-looking

cosθ = tr(AT B)

‖A‖F‖B‖F
(8)

where we choose θ ∈ (−π,π]
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Symmetric Orthogonalization

We wish to find, for a given A ∈Rn×n , the minimally-distant
orthogonal Q ∈Rn×n , measured by ‖A−Q‖F

A nice way of simultaneously seeing what the solution must be
and proving that it is correct is by minimizing the magnitude of
the angle θ between A and Q over all orthogonal Q. Let the
SVD of A be UΣV T . We have

cosθ = A : Q

‖A‖F‖Q‖F
= tr(AT Q)

n‖A‖F

= tr(V ΣU T Q)

n‖A‖F
= tr(ΣU T QV )

n‖A‖F

=
∑n

i=1σi (U T QV )i i

n‖A‖F
. (9)
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Symmetric Orthogonalization

This expression leads to our main theorem

Theorem

Over all orthogonal matrices Q ∈Rn×n , ‖A−Q‖F is minimized when
Q = L.

The proof is sufficiently elementary as to be included in a
semester-long linear algebra course
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Symmetric Orthogonalization

Proof.

Let Q be orthogonal, and denote Y :=U T QV , which is
orthogonal with diagonal elements Yi i , i = 1, . . . ,n.

Since the denominator of

∑n
i=1σi (U T QV )i i

n‖A‖F
contains only

positive constants, the task is to maximize
∑n

i=1σi Yi i .

By construction, the σi ’s are all positive, and the orthogonality
of Y demands that |Yi i | ≤ 1, so the sum is maximized when all
of the Yi i ’s equal one, which occurs if and only if
Y =U T QV = In .

Since U and V are orthogonal, the conclusion Q = L =UV T is
immediate.
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Symmetric Orthogonalization

A =


1 0 −1

1 1 0

−1 0 −1

 L =



p
2

2√
4−2

p
2

−1+
p

2
2√

4−2
p

2
− 1p

2

2p
2
−1√

4−2
p

2

1√
4−2

p
2

0

−
p

2
2√

4−2
p

2

1−
p

2
2√

4−2
p

2
− 1p

2


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Symmetric Orthogonalization

The columns of A and of L with the unit sphere
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Symmetric Orthogonalization

An alternative interpretation of L

It can be shown that if A is nonsingular, then L = (AT A)−1/2 A

This is a generalization of the algorithm for producing a unit
vector from an arbitrary nonzero vector in Rn

Useful for an application to wireless communications
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An Interesting Application of Löwdin Orthogonalization

Orthogonal-Frequency-Division-Multiplexing (OFDM) is a
candidate for the 4G wireless standard

The carrier waves are orthogonal in the sense of an inner
product defined by continuous-time integration

But the carriers are square-waves, and require a
“guard-interval” to preclude overlap due to multipath
propagation

Square-waves also have quite poor frequency-domain
properties, so are susceptible to adjacent carrier interference
due to the Doppler effect if present
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An Interesting Application of Löwdin Orthogonalization

Gaussian waves are optimally robust regarding frequency
interference but are not orthogonal

Time-shifted and frequency-shifted Gaussians can be
represented on a lattice in the time-frequency plane

The Gram matrix (denoted R) of inner products of modulated
waves is a strictly positive definite matrix

This permits one to calculate R−1/2 (via Taylor series or
Newton’s Algorithm, for example)
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An Interesting Application of Löwdin Orthogonalization

Let g be some function, and T , F ∈R+. Denote
gi , j := g (t − i T )e2πi j F .

Theorem

If gi , j generates a linearly independent for its closed linear span, then

Lö(g ) := ∑
i , j ,0,0

R−1/2
i , j gi , j

generates an orthonormal system for that span. Furthermore, if g is a
gaussian then Lö(g ) is optimally robust against time- and
frequency-dispersion.
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Send In The Clown

Consider the 320-by-200-pixel image below

Probably a clown
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Send In The Clown

This is stored as a 320×200 matrix of grayscale values, between
0 (black) and 1 (white), denoted by Aclown

We can take the SVD of Aclown

Replacing the smallest n −k singular values by 0 in the SVD of
Aclown yields the best rank-k approximation, denoted A(k)

clown,
to Aclown as measured by the Frobenius norm

Storage required for A(k)
clown is a total of (320+200) ·k bytes for

storing σ1u1 through σk uk and v1 through vk

320 ·200 = 64,000 bytes required to store Aclown explicitly
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Send In The Clown

Now consider the rank-20 approximation to the original image, and
the difference between the images

Most of a clown, with the missing parts

The original image took 64 kb, while the low-rank approximation
required (320+200) ·20 = 10.4 kb, a compression ratio of .1625
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