# Löwdin Orthogonalization A Natural Supplement to Gram-Schmidt 

The SVD is the most generally applicable of the orthogonal-diagonal-orthogonal type matrix decompositions


The SVD contains a great deal of information and is very useful as a theoretical and practical tool


Its importance in numerical linear algebra, data compression, and least-squares problem is widely known

Perhaps less well-known is that the SVD yields a mathematically beautiful orthogonalization technique

## 1 Preliminaries

We'll assume that $A \in \mathbb{R}^{m \times n}$ with $m \geq n$.


Everything that follows has an obvious dual counterpart for the case $m<n$ All that follows holds, with appropriate modifications, for complex-valued matrices

Definition 1.1 Let $A \in \mathbb{R}^{m \times n}$. Then the full singular value decomposition of $A$ is

$$
A=U \Sigma V^{T}=\left(U_{1}\left|U_{2}\right| \cdots \mid U_{m}\right)\left(\begin{array}{rrrr}
\sigma_{1} & 0 & \cdots & 0 \\
0 & \sigma_{2} & \cdots & 0 \\
\vdots & & \ddots & 0 \\
0 & \cdots & & \sigma_{n} \\
0 & \cdots & \cdots & 0 \\
\vdots & & & \vdots \\
0 & \cdots & \cdots & 0
\end{array}\right)\binom{\frac{\left(V_{1}\right)^{T}}{\left(V_{2}\right)^{T}}}{\frac{\vdots}{\left(V_{n}\right)^{T}}}
$$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal, and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal

The $\sigma_{i}$ 's are the singular values of $A$, by convention arranged in nonincreasing order

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0
$$

The columns $U_{j}$ of $U$ are called left singular vectors of $A$; the columns $V_{j}$ of $V$ are called right singular vectors of $A$

Another incarnation of the SVD is the reduced SVD

$$
A=\left(\begin{array}{cccc}
u_{11} & u_{12} & \cdots & u_{1 n} \\
& & & \\
u_{21} & u_{22} & & \vdots \\
& & & \\
\vdots & & \ddots & \\
u_{m 1} & \cdots & & u_{m n}
\end{array}\right)\left(\begin{array}{rrrr}
\sigma_{1} & 0 & \cdots & 0 \\
0 & \sigma_{2} & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & \cdots & & \sigma_{n}
\end{array}\right)\left(\begin{array}{cccc}
v_{11} & v_{12} & \cdots & v_{1 n} \\
v_{21} & v_{22} & & \vdots \\
\vdots & & \ddots & \\
v_{n 1} & \cdots & & v_{n n}
\end{array}\right)
$$

where the matrix $U$ is no longer square (so it can't be orthogonal) but still has orthonormal columns, $\Sigma$ is square and diagonal, and $V$ is still orthogonal

It is the reduced SVD which we'll use for our orthogonalization technique


The Frobenius norm of $A$ is $\|A\|_{F}:=\left(\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}\right)^{1 / 2}$

Lemma 1.2 Let $A \in \mathbb{R}^{m \times n}, m \geq n, x \in \mathbb{R}^{n}$. Let $P$ be a matrix in $\mathbb{R}^{n \times m}$ with orthonormal rows, and $Q$ be a matrix in $\mathbb{R}^{m \times n}$ with orthonormal columns. Then

$$
\begin{array}{rlr}
\|A P\|_{F} & =\|A\|_{F} \quad \text { and } \\
\|Q x\|_{2} & =\|x\|_{2} \tag{2}
\end{array}
$$

Note that although the singular values of $A$ are uniquely determined, the left (or right) singular vectors are only determined up to sign

If we fix signs for $V_{j}$, then the signs for $U_{j}$ are determined

## 2 Löwdin (Symmetric) Orthogonalization

For nonsingular $A$ with reduced SVD $A=U \Sigma V^{T}$, the matrix $L:=U V^{T}$ is called the Löwdin orthogonalization of the matrix $A$


Discovered (in a non-SVD form) by a Swedish chemist, Per-Olov Löwdin, for the purpose of orthogonalizing hybrid electron orbitals
$L$ is unique since any sequence of sign choices for the columns of $V$ determines a sequence of signs for the columns of $U$

$$
\begin{aligned}
L_{i j} & =U_{i 1}\left(V^{T}\right)_{1 j}+U_{i 2}\left(V^{T}\right)_{2 j}+U_{i 3}\left(V^{T}\right)_{3 j}+\cdots+U_{i n}\left(V^{T}\right)_{n j} \\
& =U_{i 1} V_{j 1}+U_{i 2} V_{j 2}+U_{i 3} V_{j 3}+\cdots+U_{i n} V_{j n}
\end{aligned}
$$



Like Gram-Schmidt orthogonalization, it takes as input a linearly independent set (the columns of $A$ ) and outputs an orthonormal set (the columns of $U V^{T}$ )

(Classical) Gram-Schmidt is unstable due to repeated subtractions; Modifed Gram-Schmidt (usually) remedies this

But occasionally we want to disturb the original set of vectors as little as possible

Theorem 2.1 Let $m \geq n, A \in \mathbb{R}^{m \times n}$, and suppose that $A$ has full rank. Over all matrices $Q \in \mathbb{R}^{m \times n}$ with orthonormal columns, $\|A-Q\|_{F}$ is minimized when $Q=U V^{T}$.

Proof: Let $Q \in \mathbb{R}^{m \times n}$ with $Q^{T} Q=I_{n \times n}$. Fix the reduced SVD of $A$ be $A=U \Sigma V^{T}$ by fixing a sequence of signs for the columns of $V$. By Lemma 1.2, we have

$$
\begin{aligned}
\|A-Q\|_{F} & =\left\|U \Sigma V^{T}-Q\right\|_{F} \\
& =\|U \Sigma-Q V\|_{F}
\end{aligned}
$$

The problem we must solve is to specify

$$
\begin{equation*}
\arg \left\{\min \left\{\|U \Sigma-Q V\|_{F} \mid Q^{T} Q=I_{n \times n}\right\}\right\} \tag{3}
\end{equation*}
$$

or, equivalently (because $f(x)=x^{2}$ is increasing),

$$
\arg \left\{\min \left\{\|U \Sigma-Q V\|_{F}^{2} \mid Q^{T} Q=I_{n \times n}\right\}\right\}
$$

Denote $X:=Q V$ and note that

$$
\begin{aligned}
& \arg \left\{\min \left\{\|U \Sigma-Q V\|_{F}^{2} \mid Q^{T} Q=I_{n \times n}\right\}\right\} \\
= & V^{T}\left(\arg \left\{\min \left\{\|U \Sigma-X\|_{F}^{2} \mid X^{T} X=I_{n \times n}\right\}\right\}\right)
\end{aligned}
$$

Thus we seek to solve

$$
\begin{equation*}
\arg \left\{\min \left\{\|U \Sigma-X\|_{F}^{2} \mid X^{T} X=I_{n \times n}\right\}\right\} \tag{4}
\end{equation*}
$$

We have

$$
\begin{aligned}
\|U \Sigma-X\|_{F}^{2} & =\left\|(U \Sigma-X)_{1}\right\|_{2}^{2}+\left\|(U \Sigma-X)_{2}\right\|_{2}^{2}+\cdots+\left\|(U \Sigma-X)_{n}\right\|_{2}^{2} \\
& =\left\|\left(\sigma_{1} U_{1}-X_{1}\right)\right\|_{2}^{2}+\left\|\left(\sigma_{2} U_{2}-X_{2}\right)\right\|_{2}^{2}+\cdots+\left\|\left(\sigma_{n} U_{n}-X_{n}\right)\right\|_{2}^{2}
\end{aligned}
$$

Suppose we minimize each of the $\left\|\sigma_{j} U_{j}-X_{j}\right\|_{2}^{2}$ individually. Will the column-wise concatenation of such solutions yield a solution to (4)? Yes, if the constraint

$$
\begin{equation*}
X^{T} X=I_{n \times n} \quad \text { is satisfied. } \tag{5}
\end{equation*}
$$

Consider the $j^{\text {th }}$ column in $U \Sigma-X$ :

$$
(U \Sigma-X)_{j}=\left(\sigma_{j} U_{j}-X_{j}\right)=\left(\begin{array}{c}
\sigma_{j} u_{1 j}-x_{1 j} \\
\sigma_{j} u_{2 j}-x_{2 j} \\
\vdots \\
\sigma_{j} u_{n j}-x_{n j}
\end{array}\right)
$$

## $============================================$

Now

$$
\begin{aligned}
\left\|(U \Sigma-X)_{j}\right\|_{2}^{2} & =\sum_{k=1}^{n}\left(\sigma_{j} u_{k j}-x_{k j}\right)^{2} \\
& =\sigma_{j}^{2} \sum_{k=1}^{n} u_{k j}^{2}-2 \sigma_{j} \sum_{k=1}^{n} u_{k j} x_{k j}+\sum_{k=1}^{n} x_{k j}^{2} \\
& =\sigma_{j}^{2}-2 \sigma_{j} \sum_{k=1}^{n} u_{k j} x_{k j}+1 \quad(\text { by Lemma } 1.2) .
\end{aligned}
$$

Since $\sigma_{j}, 1$, and 2 are positive constants,

$$
\begin{aligned}
& \arg \left\{\min \left\{\sigma_{j}^{2}-2 \sigma_{j} \sum_{k=1}^{n} u_{k j} x_{k j}+1 \mid\left\|X_{j}\right\|_{2}=1\right\}\right\} \\
= & \arg \left\{\max \left\{\sum_{k=1}^{n} u_{k j} x_{k j} \mid\left\|X_{j}\right\|_{2}=1\right\}\right\} .
\end{aligned}
$$

This is clearly maximized when $X_{j}=U_{j}$, so the constraint $X^{T} X=I_{n \times n}$ is satisfied and

$$
\begin{gathered}
X=Q V=U \quad \text { solves the arg-min problem (4), so } \\
Q=U V^{T} \quad \text { solves the arg-min problem (3). }
\end{gathered}
$$

$============================================$

In the case that $\operatorname{rank}(A)<n, L$ still solves (3) but is not the unique minimizer.

```
=============================================
```

Example 2.2

$$
A=\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & 1 & 0 \\
-1 & 0 & -1
\end{array}\right) \quad L=\left(\begin{array}{ccc}
\frac{\frac{\sqrt{2}}{2}}{\sqrt{4-2 \sqrt{2}}} & \frac{-1+\frac{\sqrt{2}}{2}}{\sqrt{4-2 \sqrt{2}}} & -\frac{1}{\sqrt{2}} \\
\frac{\frac{2}{\sqrt{2}}-1}{\sqrt{4-2 \sqrt{2}}} & \frac{1}{\sqrt{4-2 \sqrt{2}}} & 0 \\
\frac{-\frac{\sqrt{2}}{2}}{\sqrt{4-2 \sqrt{2}}} & \frac{1-\frac{\sqrt{2}}{2}}{\sqrt{4-2 \sqrt{2}}} & -\frac{1}{\sqrt{2}}
\end{array}\right)
$$

$$
U=\left(\begin{array}{ccc}
\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
-\frac{1}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{2}
\end{array}\right) \quad V^{T}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{4-2 \sqrt{2}}} & \frac{-1+\sqrt{2}}{\sqrt{4-2 \sqrt{2}}} & 0 \\
0 & 0 & 1 \\
\frac{1-\sqrt{2}}{\sqrt{4-2 \sqrt{2}}} & \frac{1}{\sqrt{4-2 \sqrt{2}}} & 0
\end{array}\right)
$$



Figure 1: The columns of $L=U V^{T}$ and the columns of $A$

## 3 Why Include This In Your Linear Algebra Course?

There are a lot of orthogonalization techniques - in fact, $U$ from the reduced $A=U \Sigma V^{T}$ is a perfectly good orthogonalization of $A$


Gram-Schmidt requires the choice of distinguished (initial) vector, but Löwdin orthogonalization is egalitarian in the sense that it gives all vectors equal footing

The Löwdin orthogonalization $L$ of a matrix $A$ with linearly independent columns optimally resembles $A$ ( and of course $-L$ is maximally distant from $A$ )

The proof of Theorem 2.1 uses simple optimization and is just plain fun; it's slightly simpler in the case of square $A$


Can present in class the proof of the square case, then assign a project in which students find where in the non-square case the proof breaks down, and repair it

[^0]Time permitting, investigation into the rank-deficient case is worthwhile

## Scott Beaver

## Western Oregon University <br> beavers@wou.edu

http://www.wou.edu/~beavers


[^0]:    

