
Löwdin Orthogonalization -
A Natural Supplement to Gram-Schmidt

The SVD is the most generally applicable of the orthogonal-diagonal-orthogonal
type matrix decompositions

==============================================

The SVD contains a great deal of information and is very useful as a theoretical
and practical tool

==============================================

Its importance in numerical linear algebra, data compression, and least-squares
problem is widely known

==============================================

Perhaps less well-known is that the SVD yields a mathematically beautiful
orthogonalization technique
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1 Preliminaries

We’ll assume that A ∈ Rm×n with m ≥ n.

==============================================

Everything that follows has an obvious dual counterpart for the case m < n

All that follows holds, with appropriate modifications, for complex-valued matrices

==============================================

Definition 1.1 Let A ∈ Rm×n. Then the full singular value decomposition of A is

A = UΣV T =




U1 U2 · · · Um







σ1 0 · · · 0
0 σ2 · · · 0
... . . . 0
0 · · · σn

0 · · · · · · 0
...

...
0 · · · · · · 0







(V1)
T

(V2)
T

...

(Vn)
T




where U ∈ Rm×m and V ∈ Rn×n are orthogonal, and Σ ∈ Rm×n is diagonal

The σi’s are the singular values of A, by convention arranged in nonincreasing order

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0;

The columns Uj of U are called left singular vectors of A; the columns Vj of V are
called right singular vectors of A
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Another incarnation of the SVD is the reduced SVD

A =




u11 u12 · · · u1n

u21 u22
...

... . . .

um1 · · · umn







σ1 0 · · · 0

0 σ2 · · · 0
... . . . ...
0 · · · σn







v11 v12 · · · v1n

v21 v22
...

... . . .

vn1 · · · vnn




where the matrix U is no longer square (so it can’t be orthogonal) but still has
orthonormal columns, Σ is square and diagonal, and V is still orthogonal

==============================================

It is the reduced SVD which we’ll use for our orthogonalization technique

==============================================

The Frobenius norm of A is ‖A‖F :=

(
m∑

i=1

n∑

j=1

a2
ij

)1/2

==============================================

Lemma 1.2 Let A ∈ Rm×n, m ≥ n, x ∈ Rn. Let P be a matrix in Rn×m with
orthonormal rows, and Q be a matrix in Rm×n with orthonormal columns. Then

‖AP‖F = ‖A‖F and (1)

‖Qx‖2 = ‖x‖2 (2)
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Note that although the singular values of A are uniquely determined, the left (or
right) singular vectors are only determined up to sign

==============================================

If we fix signs for Vj , then the signs for Uj are determined

***********************************************************************

2 Löwdin (Symmetric) Orthogonalization

For nonsingular A with reduced SVD A = UΣV T , the matrix L := UV T is called
the Löwdin orthogonalization of the matrix A

==============================================

Discovered (in a non-SVD form) by a Swedish chemist, Per-Olov Löwdin, for the
purpose of orthogonalizing hybrid electron orbitals

==============================================

L is unique since any sequence of sign choices for the columns of V determines a
sequence of signs for the columns of U
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Lij = Ui1(V
T )1j + Ui2(V

T )2j + Ui3(V
T )3j + · · · + Uin(V

T )nj

= Ui1Vj1 + Ui2Vj2 + Ui3Vj3 + · · · + UinVjn

==============================================

Like Gram-Schmidt orthogonalization, it takes as input a linearly independent set
(the columns of A) and outputs an orthonormal set (the columns of UV T )

==============================================

(Classical) Gram-Schmidt is unstable due to repeated subtractions; Modifed
Gram-Schmidt (usually) remedies this

==============================================

But occasionally we want to disturb the original set of vectors as little as possible

***********************************************************************

Theorem 2.1 Let m ≥ n, A ∈ Rm×n, and suppose that A has full rank. Over
all matrices Q ∈ Rm×n with orthonormal columns, ‖A − Q‖F is minimized when
Q = UV T .
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Proof: Let Q ∈ Rm×n with QTQ = In×n. Fix the reduced SVD of A be A = UΣV T

by fixing a sequence of signs for the columns of V. By Lemma 1.2, we have

‖A − Q‖F = ‖UΣV T − Q‖F

= ‖UΣ − QV ‖F

==============================================

The problem we must solve is to specify

arg

{
min

{
‖UΣ − QV ‖F

∣∣∣∣ QT Q = In×n

}}
(3)

or, equivalently (because f(x) = x2 is increasing),

arg

{
min

{
‖UΣ − QV ‖2

F

∣∣∣∣ QT Q = In×n

}}

==============================================

Denote X := QV and note that

arg

{
min

{
‖UΣ − QV ‖2

F

∣∣∣∣ QTQ = In×n

}}

= V T

(
arg

{
min

{
‖UΣ − X‖2

F

∣∣∣∣ XTX = In×n

}})
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Thus we seek to solve

arg

{
min

{
‖UΣ − X‖2

F

∣∣∣∣ XTX = In×n

}}
(4)

==============================================

We have

‖UΣ − X‖2
F = ‖(UΣ − X)1‖2

2 + ‖(UΣ − X)2‖2
2 + · · ·+ ‖(UΣ − X)n‖2

2

= ‖(σ1U1 − X1)‖2
2 + ‖(σ2U2 − X2)‖2

2 + · · ·+ ‖(σnUn − Xn)‖2
2.

==============================================

Suppose we minimize each of the ‖σjUj −Xj‖2
2 individually. Will the column-wise

concatenation of such solutions yield a solution to (4)? Yes, if the constraint

XTX = In×n is satisfied. (5)
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Consider the jth column in UΣ − X :

(UΣ − X)j = (σjUj − Xj) =




σju1j − x1j

σju2j − x2j

...

σjunj − xnj




==============================================

Now

‖(UΣ − X)j‖2
2 =

n∑

k=1

(σjukj − xkj)
2

= σ2
j

n∑

k=1

u2
kj − 2σj

n∑

k=1

ukjxkj +

n∑

k=1

x2
kj

= σ2
j − 2σj

n∑

k=1

ukjxkj + 1 ( by Lemma 1.2 ).

==============================================

Since σj , 1, and 2 are positive constants,

arg

{
min

{
σ2

j − 2σj

n∑

k=1

ukjxkj + 1

∣∣∣∣ ‖Xj‖2 = 1

}}

= arg

{
max

{
n∑

k=1

ukjxkj

∣∣∣∣ ‖Xj‖2 = 1

}}
.
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This is clearly maximized when Xj = Uj , so the constraint XTX = In×n is satisfied
and

X = QV = U solves the arg-min problem (4), so

Q = UV T solves the arg-min problem (3).

==============================================

In the case that rank(A) < n, L still solves (3) but is not the unique minimizer.

==============================================

Example 2.2

A =




1 0 −1

1 1 0

−1 0 −1




L =




√
2

2√
4 − 2

√
2

−1 +
√

2
2√

4 − 2
√

2
− 1√

2

2√
2
− 1

√
4 − 2

√
2

1√
4 − 2

√
2

0

−
√

2
2√

4 − 2
√

2

1 −
√

2
2√

4 − 2
√

2
−

1√
2




U =




1

2
−

1√
2

−
1

2

1√
2

0
1√
2

−1

2
− 1√

2

1

2




V T =




1√
4 − 2

√
2

−1 +
√

2√
4 − 2

√
2

0

0 0 1

1 −
√

2√
4 − 2

√
2

1√
4 − 2

√
2

0



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Figure 1: The columns of L = UV T and the columns of A
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3 Why Include This In Your Linear Algebra Course?

There are a lot of orthogonalization techniques - in fact, U from the reduced
A = UΣV T is a perfectly good orthogonalization of A

==============================================

Gram-Schmidt requires the choice of distinguished (initial) vector, but Löwdin
orthogonalization is egalitarian in the sense that it gives all vectors equal footing

==============================================

The Löwdin orthogonalization L of a matrix A with linearly independent columns
optimally resembles A ( and of course −L is maximally distant from A )

==============================================

The proof of Theorem 2.1 uses simple optimization and is just plain fun; it’s
slightly simpler in the case of square A

==============================================

Can present in class the proof of the square case, then assign a project in which
students find where in the non-square case the proof breaks down, and repair it

==============================================

Time permitting, investigation into the rank-deficient case is worthwhile
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