The Digital Signature Algorithm, known as DSA, is a United States government standard for digital signatures. The public key is consists of a prime, p, a prime q such that $q \mid(p-1)$, a number g such that $g^{q} \equiv 1(\bmod p)$ and $y=g^{x}(\bmod p)$ where x is the secret key.

A signature on a message, M, is produced as follows:
Signature Algorithm

1. Generate a random number k in the range $0<k<q$.
2. Compute $r=g^{k}(\bmod p)(\bmod q)($ i.e. first \bmod by p, then \bmod that result by $q)$
3. Calculate $s=\left(k^{-1}(M+x r)\right)(\bmod q)\left(\right.$ Note: k^{-1} is $\left.\bmod q\right)$. If $s=0$, then choose a new value for k and start over.
4. The signature for M is (r, s).

Given a message M and a signature (r, s), the signature is verified using the following:

$\underline{\text { Verification Algorithm }}$

1. Calculate $w=s^{-1}(\bmod q)$.
2. Calculate $u_{1}=M \cdot w(\bmod q)$.
3. Calculate $u_{2}=r w(\bmod q)$.
4. Calculate $v=\left(g^{u_{1}} \cdot y^{u_{2}}(\bmod p)\right)(\bmod q)$
5. Accept the signature as valid if $v=r$.

Suppose that my public key was

$$
p=233, q=29, g=23, y=175
$$

1. Determine whether or not the signature $(r, s)=(10,17)$ is a valid signature on the message $M=15$. Show steps.
2. Using the same p, q, g as above, a secret key of $x=19$, and a 1 -time secret value k of $k=11$, find the signature on the message $M=8$. Show all steps.
3. Show that the signature you found in the previous problem correctly verifies. Show all steps.
