# Factoring, Math, and RSA 

## MTH 440

## Fermat Factoring

Suppose n is an odd positive integer (if it's not odd divide out by 2 's until it is)

1. Let $b$ be the smallest positive integer such that $b^{2} \geq n$
2. Let $\mathrm{q}=\mathrm{b}^{2}-\mathrm{n}$
3. If $q$ is a perfect square, $q=a^{2}$, then $n=b^{2}-a^{2}$ and ( $b-$ a) $(b+a)$ are factors
4. If $q$ is not a perfect square then replace $b^{2}$ with $(b+1)^{2}$ If $\mathrm{b}+\sqrt{q}>\mathrm{n} / 2$ stop -n is prime Else go back to step 2

## We know / saw on the board

- It is easy to compute $\operatorname{gcd}(a, n)$
- It is easy to compute $a^{-1} \bmod n$
- It is computationally infeasible to factor $n$ for n large and chosen carefully
- The current record for factoring an integer of the form $n=p q$, with $p$ and $q$ prime is $n 768$ bits ( 232 digits)


## By Fermat's Little Theorem

- For N=pq a product of two distinct primes, define

$$
\phi(N)=(p-1)(q-1)
$$

- For x relatively prime to N

$$
\begin{aligned}
& x^{\phi(N)}=1 \bmod N, \text { so } \\
& x^{\phi(N)+1}=x \bmod N
\end{aligned}
$$

$$
\begin{gathered}
\text { Hence if } \mathrm{k}=1 \bmod \phi(\mathrm{n}) \text {, then } \\
\mathrm{x}^{\mathrm{k}}=\mathrm{x} \bmod \mathrm{~N}
\end{gathered}
$$

## The RSA Public Key Cipher

- Let $N=p q$ be the product of two very LARGE prime numbers ( $p$ and $q$ are kept secret)
- Typically N is 1024 or 2048 bits
- Choose a secret key $d$ with $0<d<N$
- The public key is ( $\mathrm{N}, \mathrm{e}$ ) where $0<\mathrm{e}<\mathrm{N}$ such that

$$
d^{*} e=1 \bmod \phi(N)
$$

- Fact: given N and e , it is computationally infeasible to find $d$ without knowledge of either $\phi(N)$ or $p$ and $q$ (which are all secret)



# RSA Scheme 

## Alice choose and publishes her public key $\mathrm{N}, \mathrm{e}$

## To encipher

Bob wishes to send Alice the message M (assume $\mathrm{M}<\mathrm{N}$ ) $E(M)=M^{e} \bmod N$

To decipher
Alice computes
$E(M)^{d}=M^{d e}=M \bmod N$

Since de=1 $\bmod \phi(N)$, then it should be true that $M^{\text {ed }}=M$

$$
N=15, e=11, d=3
$$

Encipher
$2^{11}=2048=8(15)$
$3^{11}=12$ (15)
$7^{11}=13(15)$
etc.


