Data Encryption Standard (DES) and Simplified DES (SDES)

MTH 440

A brief history

- Created by Horst Feistel from IBM
- Named: Dataseal -> Demonstration Cipher -> Demon -> Lucifer
- 1973 NBS (now NIST) held a public competition, Lucifer won, renamed DES (Data Encryption Standard)
- Controversy (collaboration with NSA, key size, secrecy behind design of S-boxes)
- DES became the code provided by 99% of the companies selling equipment using encryption.
- EFF (Electronic Frontier Foundation) in 1998 designed the DES Cracker form \$250,000 which broke a DES key in 3 days. Using a network of computers this was reduced to 22 hours 15 minutes in 1999.
- Triple DES: 3DES(x)=E(K, $\left.\left(\mathrm{D}\left(\mathrm{K}_{2}\left(\mathrm{E}\left(\mathrm{K}_{1}, \mathrm{x}\right)\right)\right)\right)\right)$
- New competition announced AES selected in 2002.

DES specifications

- 64-bit block cipher
- 56-bit key (the key is technically 64 bits but 8 are used as parity bits for error correcting making the effective security equivalent to a 56-bit key)
- 16 round Feistel cipher
- The round function requires 48 bits of input
- Uses 8 S-boxes of 6-bits each
- Different 48 subkey used for each round

48-bit Input

7_{10}^{10}
 S1 (101100) $=0010$

Input bits 1 and 6
Input bits 2 thru 5

Figure 3-9. Table of 4-bit outputs of S-box 1 (bits 1 thru 4)

	00	0001	0010	0011	0100	0101	0110	0111	1000	1001	10	1011	1100	1101	1110	
00	1111	0001	1000	1110	0110	1011	0011	0100	1001	0111	0010	1101	1100	0000	0101	1010
01	0011	1101	0100	0111		0010	1000	1110	1100	0000	0001	1010	0110	1001	1011	0101
10	0000	1110	0111	1011	1010	0100	1101	0001	0101	1000	1100	0110	1001	0011	0010	1111
11	110	1000	1010	0001	0011	1111	0100	0010	1011	0110	0111	1100	0000	0101	0	10

Figure 3-10. Table of 4-bit outputs of S-box 2 (bits 5 thru 8)

Key generation:
$\mathrm{K}_{1}\left(\mathrm{k}_{1} \mathrm{k}_{2} \mathrm{k}_{3} \mathrm{k}_{4} \mathrm{k}_{5} \mathrm{k}_{6} \mathrm{k}_{7} \mathrm{k}_{8} \mathrm{k}_{9} \mathrm{k}_{10}\right)=\mathrm{k}_{1} \mathrm{k}_{7} \mathrm{k}_{9} \mathrm{k}_{4} \mathrm{k}_{8} \mathrm{k}_{3} \mathrm{k}_{10} \mathrm{k}_{6}$
$\mathrm{K}_{2}\left(\mathrm{k}_{1} \mathrm{k}_{2} \mathrm{k}_{3} \mathrm{k}_{4} \mathrm{k}_{5} \mathrm{k}_{6} \mathrm{k}_{7} \mathrm{k}_{8} \mathrm{k}_{9} \mathrm{k}_{10}\right)=\mathrm{k}_{8} \mathrm{k}_{3} \mathrm{k}_{6} \mathrm{k}_{5} \mathrm{k}_{10} \mathrm{k}_{2} \mathrm{k}_{9} \mathrm{k}_{1}$
Initial Permutation
$\operatorname{IP}\left(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8}\right)=x_{2} x_{6} x_{3} x_{1} x_{4} x_{8} x_{5} x_{7}$
Expansion Function
$\operatorname{EP}\left(x_{1} x_{2} x_{3} x_{4}\right)=x_{4} x_{1} x_{2} x_{3} x_{2} x_{3} x_{4} x_{1}$

S_{0}		x_{2}	0	0	1	1
x_{3}	0	1	0	1		
x_{1}	x_{4}					
0	0		01	00	11	10
0	1		11	10	01	00
1	0		00	10	01	11
1	1		11	01	11	10

	S_{1}	x_{2}	0	0	1	1
x_{3}	0	1	0	1		
x_{1}	x_{4}					
0	0		00	01	10	11
0	1		10	00	01	11
1	0		11	00	01	00
1	1		10	01	00	11

$$
P_{4}\left(x_{1} x_{2} x_{3} x_{4}\right)=x_{2} x_{4} x_{3} x_{1} \quad \quad \mid P^{-1}=x_{4} x_{1} x_{3} x_{5} x_{7} x_{2} x_{8} x_{6}
$$

SDES summary

1. Expand K into $\mathrm{K}_{1}, \mathrm{~K}_{2}$
2. $\quad I P(x)=L(x)| | R(x)$
3. Find $\operatorname{EP}(R(x)) \oplus K_{1}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8}$
4. Apply S-boxes $S_{0}\left(x_{1} x_{2} x_{3} x_{4}\right)| | S_{1}\left(x_{5} x_{6} x_{7} x_{8}\right)=y_{1} y_{2} y_{3} y_{4}$
5. Compute $\mathrm{L}^{\prime}(\mathrm{x})=\mathrm{L}(\mathrm{X}) \oplus \mathrm{P}_{4}\left(\mathrm{y}_{1} \mathrm{y}_{2} \mathrm{y}_{3} \mathrm{y}_{4}\right)$ (Note $\mathrm{R}^{\prime}(\mathrm{X})=\mathrm{R}(\mathrm{X})$)
6. Switch $L^{\prime}(X)$ and $R^{\prime}(X)$ to get new input $R^{\prime}(X)| | L^{\prime}(X)$
7. Repeat 3-5 with new input for the $2^{\text {nd }}$ round
8. Apply the inverse permutation to the output of round 2 to get the final answer.

Note: To decipher use the same algorithm, but use K_{2} first, then K_{1} (still do the IP at the beginning and $I P^{-1}$ at the end)

- Try it - worksheet

