SUBSTITUTION CODES

MTH 440

Direct Numerical Substitution

L	$\#$	L	$\#$
A	0	N	13
B	1	O	14
C	2	P	15
D	3	Q	16
E	4	R	17
F	5	S	18
G	6	T	19
H	7	U	20
I	8	V	21
J	9	W	22
K	10	X	23
L	11	Y	24
M	12	Z	25

THIS	IS	EASY
197818	818	491824

Caesar Shift

- Substitution cipher where all letters are shifted by 3

ABCDEFGHIJKLMNOPQRSTUVWXYZ
DEFGHIJKLMNOPQRSTUVWXYZABC

I am weak.
L dp zhdn.

Decipher: MXOLXV

Simple substitution

We don't have to shift by 3 , we can shift by any amount. How many guesses would you need to get his one?
Assume spacing is preserved.

Q ewctl tqsm bw wzlmz i xqhhi.
(http://rumkin.com/tools/cipher/caesar.php)

L	$\#$	L	$\#$
A	0	N	13
B	1	O	14
C	2	P	15
D	3	Q	16
E	4	R	17
F	5	S	18
G	6	T	19
H	7	U	20
I	8	V	21
J	9	W	22
K	10	X	23
L	11	Y	24
M	12	Z	25

Add a codeword then shift by 3

ABCDEFGHIJKLMNOPQRSTUVWXYZ XYZWESTRNABCDFGHIJKLMOPQUV

Is this better?
Nk Irnk yellej?
http://rumkin.com/tools/cipher/caesar-keyed.php http://rumkin.com/tools/cipher/cryptogram-solver.php

Better yet (?) permute randomly

ABCDEFGHIJKLMNOPQRSTUVWXY?

???
RXLHVE VXHNVE KXHVD PXHN XHD
HVVHN AE BCDNVD RXHN XHD HCXB
(FREQUENCY, HELPFUL, CRIB)

Let's switch to numbers...

L	$\#$	L	$\#$
A	0	N	13
B	1	O	14
C	2	P	15
D	3	Q	16
E	4	R	17
F	5	S	18
G	6	T	19
H	7	U	20
I	8	V	21
J	9	W	22
K	10	X	23
L	11	Y	24
M	12	Z	25

We can think of "shifting by 3 " as "adding 3 " remembering that if the number is greater than 25 we loop back around to the beginning.

Shift by 3 :
$\mathrm{E} \rightarrow 4 \rightarrow 4+3=7 \rightarrow \mathrm{H}$
$\mathrm{Y} \rightarrow 24 \rightarrow 24+3=27-26=1 \rightarrow \mathrm{~B}$

This is arithmetic modulo 26 (if a number is greater than 26, we instead replace it by the remainder upon division by 26).

Shift Cipher, Shift = key

- To encipher

$$
\mathrm{PT} \rightarrow \mathrm{CT}: \mathrm{CT}=\mathrm{PT}+\mathrm{K}(\bmod 26)
$$

- To decipher

$$
\mathrm{CT} \rightarrow \mathrm{PT}: \mathrm{PT}=\mathrm{CT}-\mathrm{K}(\bmod 26)
$$

- Clearly to break we only need to check 25 "keys"

Decimation Cipher

- What if we multiplied instead of added?
- To encipher

$$
\mathrm{CT}=\mathrm{PT} \text { * K (mod 26) }
$$

Example
Let $\mathrm{k}=5$
$\mathrm{L} \rightarrow 11 \rightarrow 11^{*} 5(\bmod 26)=55(\bmod 26)=3 \rightarrow \mathrm{D}$

How do you decipher?

Look up table

- If you had a table of how to encipher all letters you could just use it in reverse to decipher

$$
\begin{aligned}
& \text { DECIMATION FOR K=5 } \\
& \text { ABCDEFGHI JKLMNOPQRSTUVWXYZ } \\
& \text { AFKPUZEJOTYDINSXCHMRWBGLQV }
\end{aligned}
$$

- Decipher: GUDDPSNU
- You try - see handout

Modular Facts

a is the "inverse" of b modulo n if

$$
\mathrm{ab}=\mathrm{ba}=1(\bmod \mathrm{n})
$$

Fact: Given n and a such that $0<a<\mathrm{n}$, then a has an inverse modulo n if and only if $\operatorname{gcd}(a, n)=1$.

How do you find an inverse?

1) If you have a multiplicative Cayley table, you could just examine the table for the inverse. Use your Cayley table to find the inverse of 21 modulo 26.
2) Guess and check: Find the inverse of 5 modulo 11.
3) Extended Euclidean Algorithm (take number or group theory)

Decimation Ciphers: a*PT (mod 26)

- You will only be able to decipher to a unique ciphertext if a has an inverse modulo 26.
- A will always be enciphered to A.
- Assuming a key with an inverse was used, how many guesses would you have to make to find the key?
- Using a frequency analysis we could just guess one letter and then check to see if it worked.

Affine Ciphers: a*PT + b (mod 26)

- Assuming we only use a's with inverses, how many different keys would an attacker have to guess?
- A frequency analysis can still help, but we have two variables to solve for so we need two equations.
- Suppose we were given the following ciphertext that we know was enciphered using an affine cipher:

Hv ufe fh kar karvedrh vu pfkarpfkdlh fer fivnk erfmdkz, karz fer svk lrekfds; hv ufe fh karz fer lrekfds, karz fer svk fivnk erfmdkz. - Fmirek Rdshkrds.

Frequency Analysis/Finding a \& b

Hv ufe fh kar karvedrh vu pfkarpfkdlh fer fivnk erfmdkz, karz fer svk lrekfds; hv ufe fh karz fer lrekfds, karz fer svk fivnk
erfmdkz. - Fmirek Rdshkrds
Letter Count Most common English letters: e,t,a,o,i,n,s

R	18
F	17
K	17
E	12
D	8
V	8

http://rumkin.com/tools/cipher/frequency.php (freq. analysis) http://rumkin.com/tools/cipher/affine.php (affine checker)

