PUBLIC KEY CRYPTOGRAPHY

MTH 440

Public vs. Private (symmetric) ciphers

Public (e.g. RSA)

- Key size - modulus N: 1024-2048 bits
- Cipher operations: exponentiation modulo N
- SLOW
- Keys can be made public - no private communication required (possible to do over internet)

Private (e.g. AES)

- Key size : 128, 192 or 256 bits
- Cipher operations: shifts, rotates, xor, etc.
- FAST
- Keys must be exchanged over a private network (impossible to do over the internet)

Best of both worlds...

- Use a public key cipher to exchange a private key
- Use the symmetric cipher to encipher large amounts of data

A second public key exchange system: Diffie-Hellman key exchange

- The Diffie-Hellman key exchange scheme, named for Whitfield Diffie and Martin Hellman bases its security on the difficulty of the discrete logarithm problem:
- Given a modulus N, a base g, and a value y, find an x such that

$$
y=g^{x} \bmod N
$$

- Example $3=2^{x}$ mod 5 (modulus 5 , base $2, y=3$)
- Guess and check. Is it 1? Is it 2? Is it 3?
- What about $8=3^{x}$ mod 101 (modulus 101, base $3, y=8$)
- Fact: If N is chosen "properly" and is of size at least 1024 bits (~ 320 decimal digits) then this problem is computationally infeasible;

Diffie-Hellman Key Exchange

- Alice and Bob agree on a public modulus p (PRIME) and base g
- Alice chooses a secret a, $0<a<p$ and computes

$$
y_{a}=g^{\mathrm{a}} \bmod \mathrm{p}
$$

- Alice sends y_{a} to Bob \rightarrow
- Alice computes the shared key

$$
\mathrm{K}=\left(\mathrm{y}_{\mathrm{b}}\right)^{\mathrm{a}}=\mathrm{y}^{\mathrm{ab}} \bmod \mathrm{p}
$$

- Alice and Bob agree on a public modulus p (PRIME) and base g
- Bob chooses a secret b, $0<b<p$ and computes

$$
y_{b}=g^{b} \bmod p
$$

- \leftarrow Bob sends y_{b} to Alice
- Bob computes the shared key

$$
\mathrm{K}=\left(\mathrm{y}_{\mathrm{a}}\right)^{\mathrm{b}}=\mathrm{y}^{\mathrm{ab}} \bmod \mathrm{p}
$$

Let's try it!

- Let's use a modulus of 13 and a base of 2.
- Think of a number between 2 and 12 - call it a (don't tell anyone)
- Compute $2^{a} \bmod 13$ - call it y_{a}
- I did the same thing - my y_{b} is 7
- Compute $\left(y_{b}\right)^{a} \bmod 13=7^{a} \bmod 13$

Attacks on the discrete log problem

- Guess and Check
- Divide and conquer
- Other more sophisticated attacks beyond the scope of this course....

Guess and Check

- The DL problem is to find x such that $y=g^{x} \bmod p$ for a large prime p when given y, g and p.
- Guess and check - does

$$
\begin{gathered}
g^{0}=y \bmod p ? \\
g^{1}=y \bmod p ? \\
\ldots g^{10}=y \bmod p \\
\ldots g^{p-1}=y \bmod p ?
\end{gathered}
$$

takes (at most p-1 guess)

Divide and Conquer

- Divide and conquer:
- Let z be the smallest integer greater than the square root of p (note $z^{2}>p$ or $z^{2}-1 \geq p$)
- Let $0 \leq a_{i}<z$, and $0 \leq b_{i}<z$
- Then all numbers between 0 and $p-1$ can be written as

$$
a_{i}+b_{i} z
$$

(Note $a_{i}=b_{i}=0$ gives $0+0 z=0$,

$$
\left.a_{i}=b_{i}=z-1 \text { gives } z-1+z-1(z)=z-1+z^{2}-z=z^{2}-1 \geq p\right)
$$

Example

- Suppose p = 101 then the square root is $10.0498 \ldots$
- So $z=11,0 \leq a_{i}<11,0 \leq b_{i}<11$
- $0+0^{*} 11=0,10+10^{*} 11=120$ so as the a_{i} and b_{i} vary, all numbers between 0 and 100 are represented

Divide and Conquer

- Given y, g and p where $y=g^{x}$ mod p, find x.
- Write $x=a_{i}+b_{i} z$ where a_{i}, b_{j}, and z are as defined previously
- Note

$$
y=g^{x}=g^{a_{i}+b_{j} z}=g^{a_{i}} \cdot\left(g^{z}\right)^{b_{j}} \bmod p
$$

- So

$$
y\left(\left(g^{z}\right)^{-1}\right)^{b_{j}}=g^{a_{i}} \bmod p
$$

- Or

$$
y\left(g^{-z}\right)^{b_{j}}=g^{a_{i}} \bmod p
$$

Divide and Conquer

- So if $x=a_{i}+b_{i} z$ then we just need to find b_{j} and a_{i} such that

$$
y\left(g^{-z}\right)^{b_{j}}=g^{a_{i}} \bmod p
$$

- Then $x=a_{i}+b_{j} z$
- Example: $8=3^{x}$ mod 101
- $y=8, g=3, p=101, z=11$,
- $g^{-2}=3^{-11}=\left((3)^{-1}\right)^{11}=34^{11}=72 \bmod 101$
- So we want

$$
8(72)^{b_{j}}=3^{a_{i}} \bmod 101
$$

Divide and Conquer $\quad 8(72)^{b}=3^{a} \bmod 101$

$a_{i j} b_{i}$	$8 *(72)^{\mathrm{bj}} \bmod 101$	$3^{\text {ai }} \bmod 101$
0	$8 \cdot(72)^{0}=8$	$3^{0}=1$
1	$8 \cdot(72)^{1}=71$	$3^{1}=3$
2	$8 \cdot(72)^{2}=62$	$3^{2}=9$
3	$8 \cdot(72)^{3}=62 \cdot 72=20$	$3^{3}=9 \cdot 3=27$
4	$8 \cdot(72)^{4}=20 \cdot 72=26$	$3^{4}=27 \cdot 3=81$
5	$8 \cdot(72)^{5}=26 \cdot 72=54$	$3^{5}=81 \cdot 3=41$
6	50	22
7	65	66
8	34	97
9	24	89
10	11	65

So in this case $b_{j}=7, a_{i}=10$ Hence $\mathrm{x}=10+7^{\star} 11=87$
Check: $3^{87}=8 \bmod 101!$

Try it!

- Worksheet

