PUBLIC KEY CRYPTOGRAPHY

MTH 440

Public vs. Private (symmetric) ciphers

Public (e.g. RSA)

- Key size modulus N: 1024-2048 bits
- Cipher operations: exponentiation modulo N
- SLOW
- Keys can be made public

 no private
 communication required
 (possible to do over
 internet)

Private (e.g. AES)

- Key size : 128, 192 or 256 bits
- Cipher operations: shifts, rotates, xor, etc.
- FAST
- Keys must be exchanged over a private network (impossible to do over the internet)

Best of both worlds...

- Use a public key cipher to exchange a private key
- Use the symmetric cipher to encipher large amounts of data

A second public key exchange system: Diffie-Hellman key exchange

- The Diffie-Hellman key exchange scheme, named for Whitfield Diffie and Martin Hellman bases its security on the difficulty of the discrete logarithm problem:
- Given a modulus N, a base g, and a value y, find an x such that

 $y = g^x \mod N$

- Example $3 = 2^x \mod 5$ (modulus 5, base 2, y = 3)
- Guess and check. Is it 1? Is it 2? Is it 3?
- What about $8 = 3^{x} \mod 101$ (modulus 101, base 3, y = 8)
- Fact: If N is chosen "properly" and is of size at least 1024 bits (~320 decimal digits) then this problem is *computationally infeasible;*

Diffie-Hellman Key Exchange

ALICE

- Alice and Bob agree on a public modulus p (PRIME) and base g
- Alice chooses a secret a, 0<a<p and computes
 - y_a=g^a mod p
- Alice sends y_a to Bob \rightarrow
- Alice computes the shared key

 $K=(y_b)^a = y^{ab} \mod p$

BOB

- Alice and Bob agree on a public modulus p (PRIME) and base g
- Bob chooses a secret b, 0<b<p and computes

y_b=g^b mod p

- \leftarrow Bob sends y_b to Alice
- Bob computes the shared key

 $K=(y_a)^b = y^{ab} \mod p$

Let's try it!

- Let's use a modulus of 13 and a base of 2.
- Think of a number between 2 and 12 call it a (don't tell anyone)
- Compute 2^a mod 13 call it y_a
- I did the same thing my y_b is 7
- Compute $(y_b)^a \mod 13 = 7^a \mod 13$

Attacks on the discrete log problem

- Guess and Check
- Divide and conquer
- Other more sophisticated attacks beyond the scope of this course....

Guess and Check

- The DL problem is to find x such that y=g^x mod p for a large prime p when given y, g and p.
- Guess and check does

g⁰=y mod p? g¹=y mod p? ...g¹⁰ = y mod p ...g^{p-1}=y mod p?

takes (at most p-1 guess)

Divide and Conquer

- Divide and conquer:
 - Let z be the smallest integer greater than the square root of p (note z² > p or z²-1 ≥ p)
 - Let $0 \le a_i < z$, and $0 \le b_i < z$
 - Then all numbers between 0 and p-1 can be written as

 $a_i + b_i z$

(Note
$$a_i = b_i = 0$$
 gives $0 + 0z = 0$,
 $a_i = b_i = z-1$ gives $z-1+z-1(z)=z-1+z^2-z = z^2-1 \ge p$)

Example

• Suppose p = 101 then the square root is 10.0498...

• So
$$z = 11, 0 \le a_i < 11, 0 \le b_i < 11$$

• 0+0*11 = 0, 10+10*11 = 120 so as the a_i and b_i vary, all numbers between 0 and 100 are represented

Divide and Conquer

- Given y,g and p where $y = g^x \mod p$, find x.
- Write x = a_i + b_iz where a_i, b_j, and z are as defined previously
- Note $y = g^{x} = g^{a_i + b_j z} = g^{a_i} \cdot (g^{z})^{b_j} \mod p$

• So
$$y\left(\left(g^{z}\right)^{-1}\right)^{b_{j}} = g^{a_{i}} \mod p$$

• Or
$$y(g^{-z})^{b_j} = g^{a_i} \mod p$$

Divide and Conquer

- So if $x = a_i + b_i z$ then we just need to find b_j and a_i such that $y(g^{-z})^{b_j} = g^{a_i} \mod p$
- Then $x = a_i + b_j z$
- Example: $8 = 3^{x} \mod 101$

- $g^{-z} = 3^{-11} = ((3)^{-1})^{11} = 34^{11} = 72 \mod 101$
- So we want

$$8(72)^{b_j} = 3^{a_i} \mod 101$$

Divide and Conquer $8(72)^{b_j} = 3^{a_i} \mod 101$

a _i ,b _i	8*(72) ^{bj} mod 101	3 ^{ai} mod 101
0	$8 \cdot (72)^0 = 8$	3 ⁰ =1
1	8·(72) ¹ = 71	3 ¹ = 3
2	8·(72) ² = 62	3 ² = 9
3	8·(72) ³ = 62 ·72 = 20	3 ³ = 9 ⋅3 = 27
4	8·(72) ⁴ = 20 ·72 = 26	3 ⁴ = 27 ·3 = 81
5	8·(72) ⁵ = 26 ·72 =54	$3^5 = 81 \cdot 3 = 41$
6	50	22
7	(65)	66
8	34	97
9	24	89
10	11 (65
So in this case $b_j = 7$, $a_i = 10$ Hence x = 10 + 7*11 = 87 Check: 3 ⁸⁷ =8 mod 101 !		

Worksheet