Math 344: Binary Operations

In this context, we refer to the operation, *not the set*, as being defined and well-defined. Specifically, the usual phrasing is "(operation) is defined/well-defined on (set)." For closure, there are two standard options "(operation) closed on (set)" or "(set) is closed under (operation)."

- 1. In each of the following, a set and an alleged operation on that set are given.² In each case, decide if the alleged operation really is an operation (defined, well-defined, and closed) or not. Then carefully prove your assertion by either showing that all three properties do hold or by showing that one of the properties fails. Watch the quantifiers.
 - (a) \mathbb{Q} (the set of rational numbers); \diamond where $a \diamond b = \sqrt{|ab|}$ for every $a, b \in \mathbb{Q}$.
 - (b) \mathbb{Z}^* (the set of nonzero integers); \div (ordinary division)
 - (c) \mathbb{Q}^* (the set of nonzero rational numbers); \div (ordinary division)
 - (d) \mathbb{R} (the set of real numbers); \otimes where $r \otimes s = r \ln(s)$ for every $r, s \in \mathbb{R}$.
 - (e) \mathbb{C} ; \ominus where for every $u, v \in \mathbb{C}$, $u \ominus v$ equals one of the solutions of the equation $x^2 2(u+v)x + 4uv = 0$.
 - (f) \mathbb{R}^* (the set of nonzero real numbers); \odot where $y \odot z = \frac{yz}{2}$ for every $r, s \in \mathbb{R}^*$.
- 2. Give two sets, at least one of which is finite, (not listed above) for which division IS an operation on the set.
- 3. Give two sets (not listed above) for which addition is NOT an operation on the set.
- 4. Give an original example of a set with an alleged operation that is defined and closed, but not well-defined.

¹Some of this worksheet comes from Mike Ward

²Some of these "operations" are from A Book of Abstract Algebra by Charles C. Pinter.