Exam 1 is an in class exam to be given on Friday, October 30th.

- Exam 1 covers material through Chapter 4 (not including Thm 4.4).
- I will provide a copy of the Assumed Background Knowledge and Chapter 4 Theorem list.
- You may have one 3x5 card (both sides) of notes. You may have no more than 2 worked out problems or theorem proofs on your note card. You will turn in your note card with your exam.
- If you need it, I will provide a copy of the back cover of your book (the Cayley tables for D_4 and D_3).
- Suggestions for study:
 - Review the theorems and proofs from the class and book. Work out the proofs on your own, then check with the book or notes.
 - Redo (not just look at) assigned homework problems.
 - Do additional problems from the text.
 - Work out the practice problems below.
 - Make a notecard.
- **Disclaimer:** The set of problems below is not meant to be an exhaustive list of the type of problems that may be on the exam, it is simply for your practice.
- 1. Circle TRUE or FALSE. Note to be TRUE, it must ALWAYS be true, no exceptions. If something is false, you should be able to come up with a counterexample.
 - (a) TRUE FALSE Any subgroup of a cyclic group is cyclic.
 - (b) TRUE FALSE $\mid D_n \mid = n$
 - (c) TRUE FALSE The intersection of two subgroups is a subgroup.
 - (d) TRUE FALSE The union of two subgroups is a subgroup.
 - (e) TRUE FALSE A nonempty subset of a group that is closed is a subgroup.
 - (f) TRUE FALSE If g is a group element and $g^n = e$, then |g| = n.
 - (g) TRUE FALSE Z_n is a subgroup of Z
 - (h) TRUE FALSE The set Q^* forms a group under the operation of addition.
 - (i) TRUE FALSE The set Q^* forms a group under the operation of multiplication.
- 2. Let $S = \{(a, b) \text{ where } a \in Q^* \text{ and } b \in Q\}$, and define a new operation # as follows: (a, b) # (c, d) = (ac + d, b).
 - (a) What is (4,5)#(-2,3)?
 - (b) Is # an operation on S (defined, well-defined, closed)? Carefully check each property and show which hold and which fail.

- (c) Is # commutative on S? (Prove or give a counterexample.)
- (d) Does S have an identity element under #? Explain. (If yes, what is the identity?)
- 3. Prove that a group of order 4 must be Abelian.
- 4. Let $G = \{a + b\sqrt{2} \mid a \text{ and } b \text{ are rational numbers not both } 0\}$. Prove that G is a group under ordinary multiplication.
- 5. Carefully prove the socks and shoes theorem (justify each step): Let a, b be elements of a group G, then $(ab)^{-1} = b^{-1}a^{-1}$.
- 6. Find a cyclic subgroup of order 4 in U(40).
- 7. Prove that if $f: A \to B$ and $g: B \to C$ are 1-1 functions, then so is $(f \circ g)(x)$.
- 8. Find C(D) in D_4 .
- 9. What are all the subgroups of D_3 ?
- 10. For any elements a, and b from a group and any integer n, prove that $(a^{-1}ba)^n = a^{-1}b^n a$.
- 11. If a and b are distinct group elements, prove that either $a^2 \neq b^2$ or $a^3 \neq b^3$.
- 12. Prove that a group of order 5 must be cyclic.
- 13. Let G be a group and let H be a subgroup of G. For any fixed x in G, define $xHx^{-1} = \{xhx^{-1} \mid h \in H\}$. Prove that xHX^{-1} is a subgroup of G.
- 14. How many different subgroups does Z_{20} have? Write them all down.
- 15. Let G be the cyclic group U(25) (under the operation of multiplication modulo 25).
 - (a) Given that 2 is a generator of G, i.e., $\langle 2 \rangle = U(25)$, find all generators of U(25).
 - (b) let *H* be the subgroup of U(25) generated by 2^2 , $H = \langle 2^2 \rangle$. Find all other elements of U(25) that generate *H*.

16. For more problems see the Supplementary Exercises for Chapter 1-4 after Chapter 4 in your book (p.95). Note, we did not cover all of Chapter 1. Odd answers are in the back of the book.