Retain this sheet for reference.

<u>Notation</u> \mathbb{Z} is the set of all integers. \mathbb{Q} is the set of all rational numbers. \mathbb{R} is the set of all real numbers. \mathbb{C} is the set of all complex numbers.

Putting a * after any set of numbers means the set of all *nonzero* elements of that set. For example, \mathbb{R}^* is the set of all nonzero real numbers.

Putting a + after any of real numbers means the set of all *positive* elements of that set. For example, \mathbb{R}^+ is the set of all positive real numbers. Recall that the number 0 is neither positive nor negative.

Assumptions Here are the assumptions we take as our starting place in the course:

- 1. +, and × are defined and well-defined on any subset of \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} .
- 2. +, and × are closed on \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} (Of course, +, and × are not necessarily closed on a subset of those sets. It depends on the subset.)
- 3. \div is defined and well-defined on any subset of \mathbb{Z}^* , \mathbb{Q}^* , \mathbb{R}^* and \mathbb{C}^* .
- 4. × and ÷ are closed on \mathbb{Q}^* , \mathbb{R}^* and \mathbb{C}^* (× and ÷ are not necessarily closed on a subset of those sets. It depends on the subset.)
- 5. +, × and \div are closed on \mathbb{Q}^+ and \mathbb{R}^+ (+, × and \div are not necessarily closed on a subsets of those sets. It depends on the subset.)
- 6. + and × are associative and commutative on any subset of \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} .
- The distributive property holds on any subset of Z, Q, ℝ and C. Additional Assumptions
- 8. \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} are Abelian groups under +.
- 9. \mathbb{Q}^* , \mathbb{R}^* and \mathbb{C}^* are Abelian groups under \times .
- 10. $+_n$ and \times_n are associative binary operations on \mathbb{Z}_n .
- 11. \mathbb{Z}_n is an Abelian group under $+_n$.
- 12. If $a, b \in \mathbb{C}$ and ab = 0, then either a = 0 or b = 0. (Note that this assumption applies automatically to any subset of \mathbb{C} , including \mathbb{Q} and \mathbb{R} and \mathbb{Z} .)
- 13. Arithmetic facts (like 2 + 3 = 5 and-for now-rules of signs, for example)
- 14. Basic facts about the familiar functions of college algebra and trig, ln, sin, etc. including the assumption that they *are* functions.
- 15. The quadratic formula.
- 16. $\sqrt{2}$ is not an element of \mathbb{Q} . In general, \sqrt{p} is not an element of \mathbb{Q} when p is a prime number.
- 17. For every $a \in \mathbb{C}$, $\sqrt{a} \in \mathbb{C}$. For every $a \in \mathbb{R}^+$, $\sqrt{a} \in \mathbb{R}^+$.

¹Shamelessly stolen from Mike Ward