MTH 344

Introduction to Cosets

- I. In this problem, we are working in the group D_4 with the operation of composition.
 - (a) Consider $\langle V \rangle$, the subgroup generated by V, in D_4 . Calculate $\langle V \rangle$, which means list the elements, inside $\{ \}$, of course.
 - (b) Calculate the left coset $D \circ \langle V \rangle = \{D \circ y : y \in \langle V \rangle\}$. Write your answer here and also in the appropriate space in the table below.
 - (c) Repeat the above with D replaced by each of the other elements of D_4 . (That's 7 more sets to compute. Sorry about that, but it is a necessary evil. Divide up the work.) Write your answers in the table below.
 - (d) Calculate the right coset $\langle V \rangle \circ D = \{y \circ D : y \in \langle V \rangle\}$. (Note the *D* and *y* have changed places.) Then, as before, repeat that with *D* replaced by each of the other elements of D_4 .Write your answers in the table below.

Left	Cosets	Right	Cosets
$D \circ \langle V \rangle$	= { }	$\langle V \rangle \circ D$	= { }
$R_0 \circ \langle V \rangle$	= { }	$\langle V \rangle \circ R_0$	= { }
$R_{90} \circ \langle V \rangle$	= { }	$\langle V \rangle \circ R_{90}$	= { }
$R_{180} \circ \langle V \rangle$	= { }	$\langle V \rangle \circ R_{180}$	= { }
$R_{270} \circ \langle V \rangle$	= { }	$\langle V \rangle \circ R_{270}$	= { }
$H \circ \langle V \rangle$	= { }	$\langle V \rangle \circ H$	= { }
$V \circ \langle V \rangle$	= { }	$\langle V \rangle \circ V$	= { }
$D' \circ \langle V \rangle$	= { }	$\langle V \rangle \circ D'$	= { }

II. Again, we are working in the group D_4 with the operation of composition. Follow the directions of (I) except use the subgroup $K := \{R_0, R_{180}, V, H\}$ of D_4 in place of $\langle V \rangle$ wherever $\langle V \rangle$ occurs in the instructions. Part (a) has no analog here so you can skip that. Record answers in the table below.

Left	Cosets	Right	Cosets
$R_0 \circ K$	= { }	$K \circ R_0$	= { }
$R_{90} \circ K$	= { }	$K \circ R_{90}$	= { }
$R_{180} \circ K$	= { }	$K \circ R_{180}$	= { }
$R_{270} \circ K$	= { }	$K \circ R_{270}$	= { }
$H \circ K$	= { }	$K \circ H$	= { }
$V \circ K$	= { }	$K \circ V$	= { }
$D \circ K$	= { }	$K \circ D$	= { }
$D' \circ K$	= { }	$K \circ D'$	= { }

- III. In this problem we are working in the permutation group A_4 (a subgroup of S_4) with the operation of composition.
 - (a) List the elements of the group A_4 . There are 12 of them. Ignore the table in the book.
 - (b) Consider $\langle (1\ 2\ 3) \rangle$, the subgroup generated by $(1\ 2\ 3)$. Calculate $\langle (1\ 2\ 3) \rangle$, which means list the elements, inside $\{ \}$, of course.
 - (c) Calculate the left coset $(1\ 2)(3\ 4) \circ \langle (1\ 2\ 3) \rangle = \{(1\ 2)(3\ 4) \circ y : y \in \langle (1\ 2\ 3) \rangle \}.$
 - (d) Repeat the above with $(1\ 2)(3\ 4)$ replaced by each of the other elements of A_4 . (That's 11 more sets to compute. Sorry about that, but it is a necessary evil. Divide up the work.) Record your answers in the table on the next page.
 - (e) Calculate the right coset $\langle (1\ 2\ 3) \rangle \circ (1\ 2)(3\ 4) = \{y \circ (1\ 2)(3\ 4) : y \in \langle (1\ 2\ 3) \rangle\}$. (Note the $(1\ 2)(3\ 4)$ and y have changed places.) Then, as before, repeat that with $(1\ 2)(3\ 4)$ replaced by each of the other elements of A_4 . Record your answers in the table on the next page.

Left Cosets	Right Cosets
$\epsilon \langle (123) \rangle = \{ \}$	$\langle (123) \rangle \epsilon = \{ \}$
$(123)\langle (123)\rangle = \{ \}$	$\langle (123)\rangle(123) = \{ \}$
$(132)\langle (123)\rangle = \{ \}$	$\langle (123)\rangle(132) = \{ \}$
$(124)\langle (123)\rangle = \{ \}$	$\langle (123)\rangle(124) = \{ \}$
$(142)\langle (123)\rangle = \{ \}$	$\langle (123)\rangle(142) = \{ \}$
$(134)\langle (123)\rangle = \{ \}$	$\langle (123)\rangle (134) = \{ \}$
$(143)\langle (123)\rangle = \{ \}$	$\langle (123)\rangle(143) = \{ \}$
$(234)\langle (123)\rangle = \{ \}$	$\langle (123)\rangle(234) = \{ \}$
$(243)\langle (123)\rangle = \{ \}$	$\langle (123)\rangle(243) = \{ \}$
$(12)(34)\langle (123)\rangle = \{ \}$	$\langle (123) \rangle (12) (34) = \{ \}$
$(13)(24)\langle (123)\rangle = \{ \}$	$\langle (123)\rangle (13)(24) = \{ \}$
$(14)(23)\langle(123)\rangle = \{ \}$	$\langle (123) \rangle (14) (23) = \{ \}$

Answer the following questions by using your results.

- 1. For each of the subgroups in (I), (II) and (III), look at your list of left cosets.
 - (a) How many *different* left cosets are there?
 - (I)
 - (II)
 - (III)
 - (b) How many elements are in each coset?
 - (I)
 - (II)
 - (III)
 - (c) Is every element of the "big" group in at least one left coset? Is any element in two different cosets?
 - (I)
 - (II)
 - (III)
- 2. Answer the above questions for the right cosets.

3. Are your left cosets the same as your right cosets?