I. In this problem, we are working in the group D_{4} with the operation of composition.
(a) Consider $\langle V\rangle$, the subgroup generated by V, in D_{4}. Calculate $\langle V\rangle$, which means list the elements, inside $\}$, of course.
(b) Calculate the left coset $D \circ\langle V\rangle=\{D \circ y: y \in\langle V\rangle\}$. Write your answer here and also in the appropriate space in the table below.
(c) Repeat the above with D replaced by each of the other elements of D_{4}. (That's 7 more sets to compute. Sorry about that, but it is a necessary evil. Divide up the work.) Write your answers in the table below.
(d) Calculate the right $\operatorname{coset}\langle V\rangle \circ D=\{y \circ D: y \in\langle V\rangle\}$. (Note the D and y have changed places.) Then, as before, repeat that with D replaced by each of the other elements of D_{4}. Write your answers in the table below.

Left Cosets		Right Cosets	
$D \circ\langle V\rangle=\{$	$\}$	$\langle V\rangle \circ D=\{$	$\}$
$R_{0} \circ\langle V\rangle=\{$	$\}$	$\langle V\rangle \circ R_{0}=\{$	$\}$
$R_{90} \circ\langle V\rangle=\{$	$\}$	$\langle V\rangle \circ R_{90}=\{$	$\}$
$R_{180} \circ\langle V\rangle=\{$	$\}$	$\langle V\rangle \circ R_{180}=\{$	$\}$
$R_{270} \circ\langle V\rangle=\{$	$\}$	$\langle V\rangle \circ R_{270}=\{$	$\}$
$H \circ\langle V\rangle=\{$	$\}$	$\langle V\rangle \circ H=\{$	$\}$
$V \circ\langle V\rangle=\{$	$\}$	$\langle V\rangle \circ V=\{$	$\}$
$D^{\prime} \circ\langle V\rangle=\{$	$\}$	$\langle V\rangle \circ D^{\prime}=\{$	$\}$

II. Again, we are working in the group D_{4} with the operation of composition. Follow the directions of (I) except use the subgroup $K:=\left\{R_{0}, R_{180}, V, H\right\}$ of D_{4} in place of $\langle V\rangle$ wherever $\langle V\rangle$ occurs in the instructions. Part (a) has no analog here so you can skip that. Record answers in the table below.

Left Cosets	Right Cosets			
$R_{0} \circ K=\{$	$\}$	$K \circ R_{0}$	$=\{$	$\}$
$R_{90} \circ K=\{$	$\}$	$K \circ R_{90}$	$=\{$	$\}$
$R_{180} \circ K=\{$	$\}$	$K \circ R_{180}$	$=\{$	$\}$
$R_{270} \circ K=\{$	$\}$	$K \circ R_{270}$	$=\{$	$\}$
$H \circ K=\{$	$\}$	$K \circ H$	$=\{$	$\}$
$V \circ K=\{$	$\}$	$K \circ V$	$=\{$	$\}$
$D \circ K=\{$	$\}$	$K \circ D$	$=\{$	$\}$
$D^{\prime} \circ K=\{$	$\}$	$K \circ D^{\prime}=\{$	$\}$	

III. In this problem we are working in the permutation group A_{4} (a subgroup of S_{4}) with the operation of composition.
(a) List the elements of the group A_{4}. There are 12 of them. Ignore the table in the book.
(b) Consider $\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle$, the subgroup generated by (1 233$)$. Calculate $\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle$, which means list the elements, inside $\{$ \}, of course.
(c) Calculate the left $\operatorname{coset}(12)(34) \circ\langle(123)\rangle=\{(12)(34) \circ y: y \in\langle(123)\rangle\}$.
(d) Repeat the above with $(12)(34)$ replaced by each of the other elements of A_{4}. (That's 11 more sets to compute. Sorry about that, but it is a necessary evil. Divide up the work.) Record your answers in the table on the next page.
(e) Calculate the right $\operatorname{coset}\langle(123)\rangle \circ\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)=\left\{y \circ\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right): y \in\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\right\rangle\right\}$. (Note the (12)(34) and y have changed places.) Then, as before, repeat that with (12)(3 4) replaced by each of the other elements of A_{4}. Record your answers in the table on the next page.

Left Cosets		Right	Cosets	
$\epsilon\langle(123)\rangle$	$=\{$	$\}$	$\langle(123)\rangle \epsilon$	$=\{$

Answer the following questions by using your results.

1. For each of the subgroups in (I), (II) and (III), look at your list of left cosets.
(a) How many different left cosets are there?
(I)
(III)
(b) How many elements are in each coset?
(I)
(III)
(c) Is every element of the "big" group in at least one left coset? Is any element in two different cosets?
(I)
(II)
(III)
2. Answer the above questions for the right cosets.
3. Are your left cosets the same as your right cosets?
