BRING A SCANTRON, PENCILS, PENS, AND CALCULATOR TO THE QUIZ!

RECOMMENDED STUDY TECHNIQUES

1) Follow the "How to Study Physical Science" guide available on the web site.
2) use the concepts below as a guide to help you focus on your notes
3) memorize terms and concepts (make flash cards, rewrite definitions 100 times, etc.)
4) go back over the labs and make sure you can do the tricks / skills
5) review some of the important figures in your lab manual and text
6) review your homework questions and answer sheets
7) study until you're sick of it, then study some more until you pass out
8) change your socks and drink plenty of water
9) clean your room....

I WOULD STUDY A MINIMUM OF 4-6 HOURS IF I WANTED TO DO WELL ON THE QUIZ!

Key Words

<table>
<thead>
<tr>
<th>Atmospheric Structure</th>
<th>Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>mesopause</td>
<td>infrared radiation</td>
</tr>
<tr>
<td>thermosphere</td>
<td>visible light</td>
</tr>
<tr>
<td>altitude vs. temp variation</td>
<td>ultraviolet radiation</td>
</tr>
<tr>
<td>altitude vs. press. variation</td>
<td>absorption</td>
</tr>
<tr>
<td>Earth-Sun Relation</td>
<td>reflection</td>
</tr>
<tr>
<td>rotation</td>
<td>greenhouse gas</td>
</tr>
<tr>
<td>revolution</td>
<td>continental heating</td>
</tr>
<tr>
<td>day</td>
<td>ocean heating</td>
</tr>
<tr>
<td>speed of rotation</td>
<td>latitudinal heating</td>
</tr>
<tr>
<td>plane of the ecliptic</td>
<td>general circulation</td>
</tr>
<tr>
<td>earth day</td>
<td>Moisture</td>
</tr>
<tr>
<td>rotational axis</td>
<td>water vapor</td>
</tr>
<tr>
<td>north pole</td>
<td>precipitation</td>
</tr>
<tr>
<td>south pole</td>
<td>solid, liquid, gas</td>
</tr>
<tr>
<td>equator</td>
<td>heat energy</td>
</tr>
<tr>
<td>axial tilt (23.5 deg.)</td>
<td>evaporation</td>
</tr>
<tr>
<td>insolation</td>
<td>condensation</td>
</tr>
<tr>
<td>angle of incidence</td>
<td>freezing</td>
</tr>
<tr>
<td>summer solstice</td>
<td>sublimation</td>
</tr>
<tr>
<td>winter solstice</td>
<td>heat</td>
</tr>
<tr>
<td>spring equinox</td>
<td>calorie</td>
</tr>
<tr>
<td>fall equinox</td>
<td>latent heat</td>
</tr>
<tr>
<td>circle of illumination</td>
<td>humidity</td>
</tr>
<tr>
<td>tropic of cancer</td>
<td>specific humidity</td>
</tr>
<tr>
<td>tropic of capricorn</td>
<td>relative humidity</td>
</tr>
<tr>
<td>electromagnetic radiation</td>
<td>vapor saturation</td>
</tr>
<tr>
<td>atmospheric heat transfer</td>
<td>saturation capacity</td>
</tr>
<tr>
<td>conduction</td>
<td>temperature vs. humidity</td>
</tr>
<tr>
<td>convection</td>
<td>temperature vs. air volume</td>
</tr>
<tr>
<td>radiation</td>
<td></td>
</tr>
</tbody>
</table>
hot air balloon model
dew point
dew
fog
clouds
rain
condensating nuclei
cloud droplets
adiabatic heating
adiabatic cooling
lapse rate
dry adiabatic lapse rate
wet adiabatic lapse rate
stable vs. unstable air
rising air mass
sinking air mass
forceful lifting
cogervative lifting
orographic lifting
frontal wedging
cloud form
cirrus
cumulus
stratus
nimbostratus
cumulonimbus
cloud base
rain drops
cloud drops
sleet
hail
glaze
advection fog
radiation fog
evaporation fog

Pressure

air pressure
force / unit area = pressure
altitude vs. air pressure
millibar
pounds per sq. inch
barometer
rising barometer
falling barometer
wind
wind and pressure
pressure differential

air mass
weather fronts
source regions
tropical, polar
maritime, continental
continental polar
continental tropical
maritime polar
maritime tropical
warm - cold air
wet-dry air
Fronts
cold fronts
warm front
frontal wedging
occluded fronts
weather vs. frontal position

Weather Patterns
Key Concepts and Ideas to Think About

Can you label and identify the structure of the atmosphere from surface to outer thermosphere?
Do you know the basic characteristics of each of the layers of the atmosphere?
Do you know the composition of the atmosphere? Can you list it from memory?
Do you know how the seasons work and why? Daily temperature fluctuations and why?
Do you know about solar influx vs. latitude vs. angle of incidence?
Can you calculation relative and absolute humidity? Do you understand vapor saturation and dew points?
Do you know the mechanisms for lifting of air? Can you sketch them from memory?
Can you sketch / label the basic cloud types?
Do you know the mechanisms of cyclones and anticyclones?
Can you make an interpretation from an isobaric pressure map?
Can you sketch / label the global atmospheric circulation model?
Can you sketch / label warm fronts, cold fronts, and occluded fronts?