
Baldwin gives a detailed description of the Eocene formations in southwestern Oregon and uses the revised stratigraphy in order to reconstruct the paleo-geography of the Eocene coastal margin. Klamath pre-Tertiary strata occupy only a small part of the study area (Fig. 1); however, Baldwin concludes that they were a major source area for sediments and their Canoeic tectonic history is closely related to that of the Eocene sedimentary basins of western Oregon.

The Eocene formations are dominantly sandstones and siltstones with some conglomeratic and coaly beds (Fig. 3). The earliest Eocene formation, the Roseburg Formation, was closely folded and thrust eastwards soon after deposition. This early Eocene telescoping of Roseburg strata may have been in response to subduction of an oceanic plate to the west. The Paleocene to early Eocene seaway (Fig. 6) in which the Roseburg Formation was deposited reached northward into Washington and volcanic and sedimentary rocks of the Crescent Formation may be correlative.

Deformation of the Roseburg Formation resulted in a brief erosional event prior to the deposition of the overlying Lookingglass Formation. The Lookingglass Formation unconformably overlies the Roseburg Formation and onlaps upon the pre-Tertiary strata along the periphery of the basin, toward the Klamath Mountains (Fig. 6). A brief period of erosion (probably due to crustal uplift), after the deposition of Lookingglass strata, created an unconformity upon which the Flournoy Formation overlapped during the middle Eocene (Fig. 2). The Flournoy seaway was one of the most restricted during the Eocene (Fig. 6). Conglomerate, pebbly sandstone, and coal were deposited in shallow seas with interlayering non-marine strata. The finer grained, thin beds of the upper part of the Flournoy Formation imply deposition in a quiet, deeper neritic environment. The source for the Flournoy strata is questionable; however, some evidence indicates that they may have come from the Klamath Mts. as end-filling a north trending basin.

The middle Eocene Tyee Formation rests unconformably on the Flournoy, Lookingglass, and Roseburg strata and shows a conspicuous lack of basal conglomerate; indicating that the source area was not adjacent to the basin and that the sediment was delivered by rivers bearing sand and silt. Previous workers (Shavely, 1964; Lovell, 1969) suggest that the sediments came from the south (Klamath province) and were carried northward over a submarine surface that was previously subdue by erosion (Flournoy-Tyee unconformity). The southern portion of this elongate basin (Fig. 13) is dominated by non-turbidite facies while the northern portion is dominated by turbidite deposits. A broad transitional zone between these two lithofacies is present. An offlap towards the north and west restricted the size of the basin toward the end of Tyee deposition and the beginning of Elkton deposition (Fig. 13).

The Elkton Formation is gradational above the Tyee Formation, becoming finer grained upward. The Elkton beds represent deposition at a time when the energy of the streams was diminishing. The overlying Bateman Formation represents the final deposits of the offlapping sea (Fig. 15). Uplift and erosion occurred prior to the deposition of the Coaledo and Spencer Formations. The Coaledo and Spencer Formations were deposited in shallow, encroaching seas during the late Eocene. Sediments for these formations came from the Klamath province and from a possible land barrier that existed at the time of deposition (Fig. 16). The non-marine, late Eocene Coalexln Formation consists of lava flows, tuffs, and tuffaceous sandstones and conglomerates that outcrop along the western edge of the Cascade range. The Coalexln appears to have been marginal to the late Eocene marine Coaledo strata, but the exact relationships are unknown. The Bastendorff Formation is predominantly shale, whose coarser, near-shore equivalents have been eroded away (Fig. 16).

Basis morphology, numerous unconformities, and northerly directed sediment transport suggest that sedimentation during the Eocene was controlled by tectonism. Although this view has yet to be proven.
Figure 1. Location map of study area. Pre-Tertiary strata found in southern ½ of study area.

Figure 2. Stratigraphic chart for southwestern Oregon.

Figure 3. Description of Eocene strata in southwestern Oregon.

Figure 4. Paleogeographic map of Eocene, Elston, and Basendorff Formations.

Figure 5. Paleogeographic map of Tyone, Elston, and Basendorff Formations.

Figure 6. Paleogeographic map of Basendorff, Ochoco, Spencer, and Basendorff Formations.

UNCONFORMITY

Post Eocene

Basendorff Formation:
Thickly bedded gray to buff shale and siltstone.

Ochoco and Spencer Formations:
Flaser and crossbedded sandstones, conglomerates, and thin-bedded siltstones.

Spencer Formation:
Sandstone with some silt beds.

Basendorff Formation:
Thickly bedded gray to brown, fine- to medium-grained sandstones and thin-bedded siltstones.

? UNCONFORMITY?

Elston Formation:
Sediments deposition with cross-bedded sands and shales.

Tyone Formation:
Thin beds of siltstone, fine-grained sandstone, and thin-bedded siltstones near the base of the section.

UNCONFORMITY

Locatiss Formation:
Eolianite bedded sandstone and siltstone, trough cross-bedding and thin-bedded siltstones near the top of the section.

UNCONFORMITY

Rocky Butte Formation:
Thinly bedded siltstone and sandstone, cross-bedding, trough cross-bedding, and thin-bedded siltstones near the top of the section.

Tertiary intrusive study:
Some andalusite is present in the section.