Math 211 Sets Practice Worksheet--Answers

1. Shade the region of the Venn diagram indicated by the following sets.

Shade:
$\left(A^{\prime} \cup B\right) \cap C$
(iii)

(ii)

$(A \cap B)^{\prime} \cup C$
(iv)

$\left(A \cap B^{\prime}\right) \cap C$
(v)

Shade:

$$
A^{\prime} \cup\left(C^{\prime} \cap B\right)
$$

(vi)

$\left(\mathrm{A} \cap \mathrm{B}^{\prime}\right)^{\prime} \cup \mathrm{C}$
2. List the elements in each of the following sets.

Let $\mathrm{U}=\{0,1,2,3,4,5,6,7,8,9,10\} ; \mathrm{A}=\{0,1,2,3,5,8\} ; \mathrm{B}=\{0,2,4,6\} ; \mathrm{C}=\{1,3,5,7\}$
i) $\mathrm{A} \cup \mathrm{B}=\{0,1,2,3,4,5,6,8\}$
ii) $\mathrm{B}^{\prime}=\{1,3,5,7,8,9,10\}$
iii) $\mathrm{A} \cap \mathrm{B}^{\prime}=\{1,3,5,8\} \quad$ Hint: List the elements in B^{\prime} first
iv) $\mathrm{B} \cup \mathrm{C}=\{0,1,2,3,4,5,6,7\}$
v) $\mathrm{B} \cup \mathrm{C}^{\prime}=\{0,2,4,6,8,9,10\}$
vi) $\mathrm{A}^{\prime} \cup \mathrm{C}=\{1,3,4,5,6,7,9,10\}$

Hint: list the elements of C^{\prime} first
vii) $\left(\mathrm{A}^{\prime} \cap \mathrm{C}\right) \cup \mathrm{B}=\{0,2,4,6,7\}$ Hint: list the elements of A^{\prime}, then $\mathrm{A}^{\prime} \cap \mathrm{C}$ first
viii) $(A \cup B)^{\prime}=\{7,9,10\}$
ix) $(\mathrm{A} \cup \mathrm{C}) \cap \mathrm{B}=\{0,2\}$
x) Write down a subset of $\mathrm{A}=\{0,1\}$

There are more - any set containing only elements that are also in A
3. Refer to the diagram to answer the questions below. What set notation would you use to represent the following regions?

Example: Region 3 could be written as $\mathrm{A} \cup \mathrm{B}$
i) Regions 1, 2 and 4 are all shaded
 $(A \cap B)^{\prime}$ or $A^{\prime} \cup B^{\prime}$
 $A \cap B^{\prime}$
iv) Regions 1 and 4 are shaded.

A'
4. Refer to the diagram to answer the questions below.

i) Only Region 1 is shaded.

iii) Regions 1 and 4 are shaded.
v) Regions 5, 6, 7 and 8 are shaded.

One possible answer
$(A \cap B) \cup$
$(A \cap C) \cup(B \cap C)$

ii) Only Region 7 is shaded.

One possible answer
$(A \cap B) \cap C^{\prime}$

$(\mathrm{A} \cup \mathrm{C})$,
or
$A^{\prime} \cap C^{\prime}$

