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The wildly popular Sudoku puzzles [2] are 9× 9 arrays divided into nine

3× 3 sub-arrays or blocks. Digits 1 through 9 appear in some of the entries.

Other entries are blank. The goal is to fill the blank entries with the digits 1

through 9 in such a way that each digit appears exactly once in each row and

in each column, and in each block. Table 1 gives an example of a completed

Sudoku puzzle.

One proves in introductory group theory that every element of any group

appears exactly once in each row and once in each column of the group’s op-

eration or Cayley table. (In other words, any Cayley table is a Latin square.)

Thus, every Cayley table has two-thirds of the properties of a Sudoku table;

only the subdivision of the table into blocks that contain each element ex-

actly once is in doubt. A question naturally leaps to mind: When and how

can a Cayley table be arranged in such a way as to satisfy the additional

requirements of being a Sudoku table? To be more specific, group elements

labeling the rows and the columns of a Cayley table may be arranged in any

order. Moreover, in defiance of convention, row labels and column labels

need not be in the same order. Again we ask, when and how can the row and
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9 3 6 1 4 7 2 5 8

1 4 7 2 5 8 3 6 9

2 5 8 3 6 9 4 7 1

3 6 9 4 7 1 5 8 2

4 7 1 5 8 2 6 9 3

5 8 2 6 9 3 7 1 4

6 9 3 7 1 4 8 2 5

7 1 4 8 2 5 9 3 6

8 2 5 9 3 6 1 4 7

Table 1: A Completed Sudoku Puzzle

column labels be arranged so that the Cayley table has blocks containing

each group element exactly once?

For example, Table 2 shows that the completed Sudoku puzzle in Table

1 is actually a Cayley table of Z9 := {1, 2, 3, 4, 5, 6, 7, 8, 9} under addition

modulo 9. (We use 9 instead of the usual 0 in order to maintain the Sudoku-

like appearance.)

As a second example, consider A4, the alternating group on 4 symbols.

We seek to arrange its elements as row and column labels so that the resulting

Cayley table forms a Sudoku-like table, one in which the table is subdivided

into blocks such that each group element appears exactly once in each block

(as well as exactly once in each column and in each row, which, as noted, is

always so in a Cayley table). Table 3 shows such an arrangement with 6× 2

blocks. (In constructing the table, we operate with the row label on the left

and column label on the right. Permutations are composed right to left. For

example, the entry in row (14)(23), column (134) is (14)(23)(134) = (123).)

We say Tables 2 and 3 are Cayley-Sudoku tables of Z9 and A4, respec-

tively. In general, a Cayley-Sudoku table of a finite group G is a Cayley table

for G subdivided into uniformly sized rectangular blocks in such a way that

each group element appears exactly once in each block.
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9 3 6 1 4 7 2 5 8

9 9 3 6 1 4 7 2 5 8

1 1 4 7 2 5 8 3 6 9

2 2 5 8 3 6 9 4 7 1

3 3 6 9 4 7 1 5 8 2

4 4 7 1 5 8 2 6 9 3

5 5 8 2 6 9 3 7 1 4

6 6 9 3 7 1 4 8 2 5

7 7 1 4 8 2 5 9 3 6

8 8 2 5 9 3 6 1 4 7

Table 2: A Cayley Table of Z9 with Sudoku Properties

(1) (12)(34) (13)(24) (14)(23) (123) (243) (142) (134) (132) (143) (234) (124)

(1) (1) (12)(34) (13)(24) (14)(23) (123) (243) (142) (134) (132) (143) (234) (124)

(13)(24) (13)(24) (14)(23) (1) (12)(34) (142) (134) (123) (243) (234) (124) (132) (143)

(123) (123) (134) (243) (142) (132) (124) (143) (234) (1) (14)(23) (12)(34) (13)(24)

(243) (243) (142) (123) (134) (143) (234) (132) (124) (12)(34) (13)(24) (1) (14)(23)

(132) (132) (234) (124) (143) (1) (13)(24) (14)(23) (12)(34) (123) (142) (134) (243)

(143) (143) (124) (234) (132) (12)(34) (14)(23) (13)(24) (1) (243) (134) (142) (123)

(12)(34) (12)(34) (1) (14)(23) (13)(24) (243) (123) (134) (142) (143) (132) (124) (234)

(14)(23) (14)(23) (13)(24) (12)(34) (1) (134) (142) (243) (123) (124) (234) (143) (132)

(134) (134) (123) (142) (243) (124) (132) (234) (143) (14)(23) (1) (13)(24) (12)(34)

(142) (142) (243) (134) (123) (234) (143) (124) (132) (13)(24) (12)(34) (14)(23) (1)

(234) (234) (132) (143) (124) (13)(24) (1) (12)(34) (14)(23) (142) (123) (243) (134)

(124) (124) (143) (132) (234) (14)(23) (12)(34) (1) (13)(24) (134) (243) (123) (142)

Table 3: A Cayley Table of A4 with Sudoku Properties

Uninteresting Cayley-Sudoku tables can be made from any Cayley table

of any group by simply defining the blocks to be the individual rows (or

columns) of the table. Our goal in this note is to give three methods for pro-

ducing interesting tables using cosets, thereby uncovering new applications

of cosets. (See any introductory group theory text for a review of cosets, for

example, [1, Chapter 7].)

Cosets Revisit Table 2. The cyclic subgroup generated by 3 in Z9 is 〈3〉 =

{9, 3, 6}. The right and left cosets of 〈3〉 in Z9 are 〈3〉+9 = {9, 3, 6} = 9+〈3〉,
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〈3〉 + 1 = {1, 4, 7} = 1 + 〈3〉, and 〈3〉 + 2 = {2, 5, 8} = 2 + 〈3〉. With only a

little prompting, we quickly see that the columns in each block are labeled by

elements of right cosets of 〈3〉 in Z9. Each set of elements labeling the rows

of a block contains exactly one element from each left coset. Equivalently,

the row labels partition Z9 into complete sets of left coset representatives of

〈3〉 in Z9. (Momentarily we shall see why we bothered to distinguish between

right and left.)

Reexamining Table 3 reveals a similar structure. Consider the subgroup

H := 〈(12)(34)〉 = {(1), (12)(34)}. We brush-up on composing permutations

(right to left) by calculating the right coset H(123) = {(1)(123), (12)(34)(123)} =

{(123), (243)} and the corresponding left coset {(123)(1), (123)(12)(34)} =

{(123), (134)}. In that fashion, we find the right cosets to be H(1) =

{(1), (12)(34)}, H(13)(24) = {(13)(24), (14)(23)}, H(123) = {(123), (243)},
H(142) = {(142), (134)}, H(132) = {(132), (143)}, and H(234) = {(234), (124)}
while the left cosets are (1)H = {(1), (12)(34)}, (13)(24)H = {(13)(24), (14)(23)},
(123)H = {(123), (134)}, (243)H = {(243), (142)}, (132)H = {(132), (234)},
(143)H = {(143), (124)}. This time we know what to expect. Sure enough,

the columns in Table 3 are labeled by the elements of the distinct right cosets

of H in A4 while the row labels partition A4 into complete sets of left coset

representatives of H in A4.

Those examples illustrate our first general construction.

Before proceeding, let us agree upon a convention for labeling a Cayley

table. When a set is listed in a row or column of the table, it is to be

interpreted as the individual elements of that set being listed in separate

rows or columns, respectively. For example, under that convention, the rows

and columns of Table 2 could be labeled

{9, 3, 6} {1, 4, 7} . . .

{9, 1, 2}
{3, 4, 5}

...

where the label {9, 1, 2} is interpreted as the elements 9, 1, and 2 listed
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vertically, one per row, and {9, 3, 6} is interpreted as the elements 9, 3, and

6 listed horizontally, one per column.

Cayley-Sudoku Construction 1 Let G be a finite group. Assume H is a

subgroup of G having order k and index n (so that |G| = nk). If Hg1, Hg2, . . . , Hgn

are the n distinct right cosets of H in G, then arranging the Cayley table of

G with columns labeled by the cosets Hg1, Hg2, . . . , Hgn and the rows labeled

by sets T1, T2, . . . , Tk (as in Table 4) yields a Cayley-Sudoku table of G with

blocks of dimension n× k if and only if T1, T2, . . . , Tk partition G into com-

plete sets of left coset representatives of H in G.

Hg1 Hg2 . . . Hgn

T1

T2

...

Tk

Table 4: Construction 1 Using Right Cosets and Left Coset Representatives

Furthermore, if y1H, y2H, . . . , ynH are the n distinct left cosets of H in

G, then arranging the Cayley table of G with rows labeled by the cosets

y1H, y2H, . . . , ynH and the columns labeled by sets R1, R2, . . . , Rk yields a

Cayley-Sudoku table of G with blocks of dimension k × n if and only if

R1, R2, . . . , Rk partition G into complete sets of right coset representatives

of H in G.

Note that the second version of the Construction 1 is dual to the first,

obtained by reversing the left with right and rows with columns.

Now let us prove the correctness of the construction for the case of right

cosets. An arbitrary block of the table, indexed by Th = {t1, t2, . . . , tn} and

Hgi, is the given the following table.
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Hgi

t1 t1Hgi

t2 t2Hgi

...
...

tn tnHgi

The elements in the block are the elements of the set B := t1Hgi∪t2Hgi∪
. . .∪ tnHgi = (t1H ∪ t2H ∪ . . .∪ tnH)gi, the equality being a routine exercise.

We want to show that the elements of G appear exactly once in that block

if and only if Th is a complete set of left coset representatives of H in G.

If Th is a complete set of left coset representatives, then t1H ∪ t2H ∪ . . .∪
tnH = G. So we have B = Ggi = G. Thus every element of G appears in

every block. But the number of entries in the block is nk and the order of G

is nk, so every element of G appears exactly once in each block.

On the other hand, if every element appears exactly once in each block,

then B = G and that gives us G = Gg−1
i = Bg−1

i = t1H ∪ t2H ∪ . . . ∪ tnH.

There are n cosets in this union, each having order k. Therefore, since the

union of those cosets is the entire group G and |G| = nk, we must have n

distinct cosets in the union. Thus, {t1, t2, . . . , tn} is a complete set of left

coset representatives of H in G, as claimed.

The first punch line of this section is that any proper non-trivial subgroup

of a finite group gives rise to interesting Cayley-Sudoku tables by using Con-

struction 1. Therefore, any finite group having a proper non-trivial subgroup

(which is to say, any finite group whose order is not a prime) admits an in-

teresting Cayley-Sudoku table.

We now introduce another construction utilizing cosets. This construction

is “like-handed,” that is, it uses left cosets and left coset representatives (or

right and right). Construction 1 is “cross-handed.” It uses right cosets and

left coset representatives or left cosets and right coset representatives.

For this construction, we recall a standard group theoretic definition. For

any subgroup H of a group G and for any g ∈ G, g−1Hg := {g−1hg : h ∈ H}
is called a conjugate of H and is denoted Hg. It is routine to show Hg is a
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subgroup of G.

Cayley-Sudoku Construction 2 Assume H is a subgroup of G having or-

der k and index n. Also suppose t1H, t2H, . . . , tnH are the distinct left

cosets of H in G. Arranging the Cayley table of G with columns labeled by

the cosets t1H, t2H, . . . , tnH and the rows labeled by sets L1, L2, . . . , Lk

yields a Cayley-Sudoku table of G with blocks of dimension n× k if and only

if L1, L2, . . . , Lk are complete sets of left coset representatives of Hg for all

g ∈ G.

t1H t2H . . . tnH

L1

L2

...

Lk

Table 5: Construction 2 Using Left Cosets and Left Coset Representatives

Since one or two interesting subtleties arise, we will verify the correctness

of Construction 2. Consider an arbitrary block in the table, indexed by Li :=

{gi1, gi2, . . . gin} and tjH. Note, however, that tjH = tjHt−1
j tj = H t−1

j tj.

Thus, our block is the following.

H t−1
j tj

gi1 gi1H
t−1
j tj

gi2 gi2H
t−1
j tj

...
...

gin ginH
t−1
j tj

The set of elements in the block is gi1H
t−1
j tj ∪ gi2H

t−1
j tj ∪ . . . ∪ g1nH

t−1
j tj =

(gi1H
t−1
j ∪ . . . ∪ ginH

t−1
j )tj.
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Suppose L1, L2, . . . , Lk are complete sets of left coset representatives of

Hg for all g ∈ G, then Li = {gi1, gi2, . . . , gin} is a complete set of left coset

representatives of H t−1
j . Therefore, just as in the verification of Construction

1, we can show every element of G appears exactly once in the block.

Conversely, suppose every element of G appears exactly once in each

block. Once again arguing as in Construction 1, we conclude each Li is a

complete set of left coset representatives of H tj for every j.

In order finish, we need a (known) result of independent group theoretic

interest. Namely, with notation as in the Construction, for every g ∈ G,

there exists tj such that Hg = H t−1
j . To see that, let g ∈ G, then g−1 is in

some left coset of H, say tjH. Thus, g−1 = tjh for some h ∈ H. Armed with

the observation hHh−1 = H (easily shown since H is a subgroup), we hit our

target: Hg = g−1Hg = (tjh)H(h−1t−1
j ) = tj(hHh−1)t−1 = tjHt−1

j = H t−1
j .

Combining this with the preceding paragraph, we can conclude L1, L2, . . . , Lk

are complete sets of left coset representatives of Hg for all g ∈ G, as claimed.

We invite the reader to formulate and verify a right-handed version of

Construction 2. We also raise an interesting and, evidently, non-trivial ques-

tion for further investigation. Under what circumstances can one decompose

a finite group G in the way required by Construction 2?

There is one easy circumstance. If H is a normal subgroup of a G, then

it is not difficult to show Hg = H for every g ∈ G [1, Chapter 9]. Thus,

decomposing G into complete sets of left coset representatives of H will do

the trick. Sadly, in that case, Construction 2 gives the same Cayley-Sudoku

table as Construction 1 because the left cosets indexing the columns equal

the corresponding right cosets by normality.

Happily, we know of one general circumstance in which we can decompose

G in the desired way to obtain new Cayley-Sudoku tables. It is contained in

the following proposition, stated without proof.

Proposition Suppose the finite group G contains subgroups T := {t1, t2, . . . , tn}
and H := {h1, h2, . . . , hk} such that G = {th : t ∈ T, h ∈ H} := TH and

T ∩H = {e}, then the elements of T form a complete set of left coset repre-
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sentatives of H and the cosets Th1, Th2, . . . , Thk decompose G into complete

sets of left coset representatives of Hg for every g ∈ G.

In other words, from the Proposition, Construction 2 applies when we set

Li := Thi and use the left cosets t1H, t2H, . . . , tnH. Let us try it out on the

group S4.

Let H = 〈(123)〉 = {(1), (123), (132)} and T = {(1), (12)(34), (13)(24), (14)(23), (24), (1234), (1432), (13)}.
One can check (by brute force, if necessary) that H and T are subgroups of

S4 satisfying the hypotheses of the Proposition. Therefore, according to

Construction 2, the following table yields a Cayley-Sudoku table of S4.

H (12)(34)H (13)(24)H (14)(23)H (24)H (1234)H (1432)H (13)H

T

T (123)

T (132)

Seeking to be convinced that is a new Cayley-Sudoku table, not of the

kind produced by Construction 1, we examine the sets indexing the columns

and rows. In Construction 1, the sets indexing columns are right cosets of

some subgroup or else the sets indexing the rows are left cosets of some

subgroup. In our table, the only subgroup indexing the columns is H and

most of the remaining index sets are not right cosets of H. For example,

(12)(34)H 6= H(12)(34) and so it is not a right coset of H. Similar consider-

ation of the sets indexing the rows shows Construction 1 was not on the job

here.

Extending Cayley-Sudoku tables Our final construction shows a way

to extend a Cayley-Sudoku table of a subgroup to a Cayley-Sudoku table of

the full group.

Cayley-Sudoku Construction 3 Let G be a finite group with a subgroup

A. Let C1, C2, . . . , Ck partition A and R1, R2, . . . Rn partition A such that

the following table is a Cayley-Sudoku table of A.
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C1 C2 . . . Ck

R1

R2

...

Rn

If {l1, l2, . . . , lt} and {r1, r2, . . . rt} are complete sets of left and right coset

representatives, respectively, of A in G, then arranging the Cayley table of G

with columns labeled with the sets Cirj, i = 1, . . . , k, j = 1, . . . , t and the bth

block of rows labeled with ljRb, j = 1, . . . , t, for b = 1, . . . , n (as in Table 6)

yields a Cayley-Sudoku table of G with blocks of dimension tk × n.

C1r1 C2r1 . . . Ckr1 C1r2 . . . Ckr2 . . . C1rt . . . Ckrt

l1R1

l2R1

...

ltR1

l1R2

...

ltR2

...

l1Rn

...

ltRn

Table 6: Construction 3

Proving the correctness of Construction 3 is quite like the proof for Con-

struction 1. We leave it as an exercise for the reader and proceed to an

example. Working in the group Z8 := {0, 1, 2, 3, 4, 5, 6, 7} under addition

modulo 8, let us apply Construction 1 to form a Cayley-Sudoku table for the
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subgroup 〈2〉 and then extend that table to a Cayley-Sudoku table of Z8 via

Construction 3.

Observe that 〈4〉 = {0, 4} is a subgroup of 〈2〉 = {0, 2, 4, 6}. The left

and right cosets of 〈4〉 in 〈2〉 are 0 + 〈4〉 = {0, 4} = 〈4〉 + 0 and 2 + 〈4〉 =

{2, 6} = 〈4〉 + 0. Thus, {0, 2} and {4, 6} partition Z8 into complete sets of

right coset representatives. Applying Construction 1, wherein elements of

left cosets label the rows and right coset representatives label the columns,

yields Table 7.

0 2 4 6

0 0 2 4 6

4 4 6 0 2

2 2 4 6 0

6 6 0 2 4

Table 7: Construction 1 Applied

Now the left and right cosets of 〈2〉 in Z8 are 0+〈2〉 = {0, 2, 4, 6} = 〈2〉+0

and 1 + 〈2〉 = {1, 3, 5, 7} = 〈2〉 + 1. Accordingly, {0, 1} is a complete set of

left and right coset representatives of 〈2〉 in Z8. According to Construction

3, Table 8 should be (and is, much to our relief) a Cayley-Sudoku table of

Z8. For easy comparison with Table 6, rows and columns are labeled both

with sets and with individual elements.

We chose Z8 for our example because it has enough subgroups to make

Construction 3 interesting, yet the calculations are easy to do and the result-

ing table fits easily on a page. In one sense, however, the calculations are

too easy. Since Z8 is abelian, all the corresponding right and left cosets

of any subgroup are equal. (In other words, all the subgroups are nor-

mal.) Thus, the role of right versus left in Construction 3 is obscured. The

interested reader may wish to work out an example where right and left

cosets are different. For instance, in S4, one could consider the subgroup

A := {(1), (12)(34), (13)(24), (14)(23), (24), (1234), (1432), (13)}. Use Con-
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{0, 2}+ 0 {0, 2}+ 1 {4, 6}+ 0 {4, 6}+ 0

0 2 1 3 4 6 5 7

0 + {0, 4}
0 0 2 1 3 4 6 5 7

4 4 6 5 7 0 2 1 3

1 + {0, 4}
1 1 3 2 4 5 7 6 0

5 5 7 6 0 1 3 2 4

0 + {2, 6}
2 2 4 3 5 6 0 7 1

6 6 0 7 1 2 4 3 5

1 + {2, 6}
3 3 5 4 6 7 1 0 2

7 7 1 0 2 3 5 4 6

Table 8: A Cayley-Sudoku Table of Z8 from Construction 3

struction 1 with the subgroup 〈(24)〉 of A to obtain a Cayley-Sudoku table

of A, then apply Construction 3 to extend that table to a Cayley-Sudoku

table of S4. The associated computations are manageable (barely, one might

think by the end!) and the roles of right and left are more readily apparent.

Table 8 is a new sort of Cayley-Sudoku table, one not produced by either

of Constructions 1 or 2. To see why, recall that in Construction 1 and 2

(including the right-handed cousin of 2), either the columns or the rows in

the blocks are labeled by cosets of a subgroup. One of those cosets is, of

course, the subgroup itself. However, we easily check that none of the sets

labeling columns or rows of the blocks in Table 8 are subgroups of Z8.

A puzzle The ubiquitous Sudoku leads many students to treat the familiar

exercise of filling in the missing entries of a partial Cayley table as a special

sort of Sudoku puzzle. In a recent group theory course taught by the third

author, several students explained how they deduced missing entries in such

an exercise [1, exercise 25 p. 55] by writing “I Sudokued them.” Meaning

they applied Sudoku-type logic based on the fact that rows and columns of

a Cayley table contain no repeated entries.
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We extend that notion by including a Cayley-Sudoku puzzle for the

reader. It requires both group theoretic and Sudoku reasoning. The group

theory required is very elementary. (In particular, one need not use the

classification of groups of order 8.)

The puzzle has three parts, one for entertainment and two to show this

is truly a new sort of puzzle. First, complete Table 9 with 2 × 4 blocks as

indicated so that it becomes a Cayley-Sudoku table. Do not assume a priori

that Table 9 was produced by any of Constructions 1-3. Second, show group

theoretic reasoning is actually needed in the puzzle by completing Table 9

so that it satisfies the three Sudoku properties for the indicated 2× 4 blocks

but is not the Cayley table of any group. Third, show Sudoku reasoning is

required by finding another way to complete Table 9 so that it is a Cayley

table of some group, but not a Cayley-Sudoku table.

1 2 3 4 5 6 7 8

1 7

5 1

2 1

6 1

3 7

7 6 1

4

8 7

Table 9: A Cayley-Sudoku Puzzle
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Ideas for further study By exhaustive (in more ways than one) analysis

of cases, the authors can show that the only 9× 9 Cayley-Sudoku tables are

those resulting from Construction 1. Is the same true for p2 × p2 Cayley-

Sudoku tables where p is a prime?

All the constructions of Cayley-Sudoku tables known to the authors,

including some not presented in this paper, ultimately rely on cosets and

coset representatives. Are there Cayley-Sudoku constructions that do not

use cosets and coset representatives?

Related to the previous question, how does one create a single block of a

Cayley-Sudoku table? That is, if G is a group with subsets (not necessarily

subgroups) K and H such that |G| = |K||H|, what are “nice” conditions

under which we will have KH = G?

Can a Cayley-Sudoku table of a group be used to construct a Cayley-

Sudoku table of a subgroup or a factor group? Can a Cayley-Sudoku table

of a factor group be used to construct a Cayley-Sudoku table of the original

group?

Are there efficient algorithms for generating interesting Cayley-Sudoku

puzzles?

Making the definition of Cayley-Sudoku tables less restrictive can lead to

some interesting examples. For instance if the definition of Cayley-Sudoku

tables is altered so that the individual blocks of the table do not have to

be of fixed dimension we obtain in Table 10 an example of a generalized

Cayley-Sudoku table of the group Z8.

What is a construction method for such generalized Cayley-Sudoku ta-

bles? How about for jigsaw Cayley-Sudoku tables wherein the blocks are not

rectangles?

Perhaps most interesting of all, find other circumstances under which

Construction 2 applies.

Acknowledgement This note is an outgrowth of the senior theses of the

first two authors written under the supervision of the third author. We
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0 4 1 3 5 7 2 6

0 0 4 1 3 5 7 2 6

1 1 5 2 4 6 0 3 7

2 2 6 3 5 7 1 4 0

3 3 7 4 6 0 2 5 1

4 4 0 5 7 1 3 6 2

5 5 1 6 0 2 4 7 3

6 6 2 7 1 3 5 0 4

7 7 3 0 2 4 6 1 5

Table 10: A Generalized Cayley-Sudoku Table

thank one another for many hours of satisfying and somewhat whimsical
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Puzzle Solutions In each solution, the original puzzle entries are in bold

face for easy identification.

Part 1. Table 11 shows the solution. Clearly, it satisfies the three Sudoku

properties. We will show it is the Cayley table of D4, the dihedral group of

order 8. We will regard D4 as the group of symmetries of a square. Let R90

be a counterclockwise rotation about the center of the square and let H be

a reflection across a line through the center of the square that is parallel to

a side of the square. The eight elements of D4 are R0
90, R1

90, R2
90, R3

90, HR0
90,

15



HR1
90, HR2

90, and HR3
90. Numbering those elements 1 through 8 in the order

given and then calculating the Cayley table gives Table 11. Thus, we have

a Cayley-Sudoku table as claimed. By the way, it was obtained by applying

Construction 1 to the subgroup 〈R90〉.

1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8

5 5 6 7 8 1 2 3 4

2 2 3 4 1 8 5 6 7

6 6 7 8 5 4 1 2 3

3 3 4 1 2 7 8 5 6

7 7 8 5 6 3 4 1 2

4 4 1 2 3 6 7 8 5

8 8 5 6 7 2 3 4 1

Table 11: Cayley-Sudoku Puzzle Solution

Part 2. Table 12 visibly satisfies the Sudoku conditions. It is not a Cayley

table. For otherwise, 1 · 7 = 7 implies 1 is the identity. However, 1 · 2 6= 2.

1 2 3 4 5 6 7 8

1 1 3 2 4 5 6 7 8

5 5 7 6 8 1 2 3 4

2 2 4 3 1 8 5 6 7

6 6 8 7 5 4 1 2 3

3 3 1 4 2 7 8 5 6

7 7 5 8 6 3 4 1 2

4 4 2 1 3 6 7 8 5

8 8 6 5 7 2 3 4 1

Table 12: Sudoku-not-Cayley Puzzle Solution
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Part 3. Table 13 does not satisfy the Sudoku conditions. Blocks contain

repeated entries. It is, however, a Cayley table. One can check that it is

again the Cayley table of D4. Just change the labeling of R2
90 from 3 to 5

and of H from 5 to 3. Table 13 is the recalculated Cayley table.

1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8

5 5 4 7 2 1 8 3 6

2 2 5 8 1 4 3 6 7

6 6 7 4 3 8 1 2 5

3 3 6 1 8 7 2 5 4

7 7 8 5 6 3 4 1 2

4 4 1 6 5 2 7 8 3

8 8 3 2 7 6 5 4 1

Table 13: Cayley-not-Sudoku Puzzle Solution
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