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Abstract. The spatial distributions of
magmatic complexes and other features thought to
pe associated with major crustal structures may
be important sources of information about large-
scale structural patterns. attempts to
incorporate these features into quantitative
analyses of linear features have used arbitrary
or inaccurate criteria to judge hypothetical
geological relationships. In this paper,
features of limited spatial extent are considered
pointlike, and the concept of a probabilistic
lattice point distribution is used to formulate a
statistical method that leads to a guantitative
and reproducible analysis of directional patterns
based solely on the locations of the points.

Thus this analysis is independent of linear pat-
terns and provides a measure of the directional
information intrinsic to point patterns. The
procedure determines the most likely trends of
structural anisotropies; Monte Carlo simulations
of random point patterns provide a reference
distribution from which confidence levels can be
determined. Applications to published data for
magmatic complexes, magnetic contour closures,
and structural change points are used as
examples. The results suggest that there has
been a tendency to overestimate the amount of
information available from point patterns.

However,

Introduction

The orientations of linear features play an
important role in identifying the large-scale
structure of the continental crust. The majority
of papers presented at several recent conferences
(e.g., the Fifth International Conference on
Cairo, 1983) have been based
on lineament identification and interpretation of
air photos, satellite images, geophysical maps,
or the structural geology of the surface rocks.
The statistical analysis of orientations of
methods that have
been extensively discussed elsewhere [e.g.,
Mardia, 1972; Abdel-Rahman and Hay, 1981].

Large-scale structures in the crust are ex-
pected to influence the locations of a variety of
geological features that are nonlinear in form.
For example, alkaline igneous complexes and
kimberlites, ore bodies, and earthquakes could
all be controlled by crustal structures with
approximately linear traces (faults or frac-
tures). This paper addresses these localized,
pointlike features and their connection to linear
features. 1deally, would establish a one-to-
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one correlation between the locations of linea-
ments and pointlike features associated with

them. 1In practice, this has rarely been
achieved.
Furthermore, amblguities arise even in such an

apparently straightforward connection because the
assumptions inherent in the interpretation of
spatial correlations cannot be adequately tested.
The relationship between "prominent” photolinea-
ments and structural change points proposed by
Werner [1979] illustrates the problem. Werner
assumed that each lineament could be represented
by a 2-km-wide zone and tested the spatial cor-
relation between the zones and structural change
points by ¢dGmparing the number of points actually
within the zones to the number expected from a
random distribution of points. However, such a
test does not address a fundamental uncertainty
as to whether the "prominent" lineaments compose
a set of observations that accurately represent
the orientations of crustal structures.

Statistical tests applied to points and linea-
ments will only constrain hypotheses of geoclogic
relationships between points and structures when
lineaments correspond exactly to structures
(Figure 1ta). However, observed lineaments may
underrepresent the structures that control the
locations of the points (Figure 1b); this is
likely when value judgments of the "prominence"
of lineaments must be made. Alternatively,
lineaments may overrepresent the structures if
only a subset of the structures controls the
locations of points (say, the largest structures)
but all structures produce lineaments (Figure
1c). A final possibility is that the structures
that control points and those that produce linea-
ments have no relationship (Figure 1d), including
an extreme case in which there are structures but
no lineaments. Tests of spatial correlaticn
applied to cases in Figures 1b, 1c, or 1d have no
clearly defined relevance to geological hy-
potheses, even if the test indicates a departure
from randomness.

An alternative approach is developed in this
paper. If structures with linear traces control
the locations of pointlike features, then one
type of evidence for such control and for the
orientations of the structures can be obtained
from the areal distribution of the points alone
The basis for such an analysis 1s not new:
Chapman [ 1968} suggested that the locations of
alkaline igneous complexes were related to
crustal fractures and that the orientations cf
the fractures were apparent in reticulate or
lattice patterns that could be recognized from
the areal distribution of the complexes. He
illustrated his lattices by drawing grid lines
such that there was a "tendency for the plutons
and central complexes to lie at nodal points in
the chosen lattice..." {Chapman, 1968, p. 389].

A means for determining lattice directions other
than by inspection was not proposed.




Fig. 1.

Lineaments do not represent structures.

Figure 1la.

Fracture Traces as Lattices

By analogy with Chapman's proposal that
crustal fractures selectively permit the emplace-
ment of magma from depth, structures are here
considered that behave as narrow zones in which
the probability of an event (e.g., magma emplace-
ment} 1s high relative to thelr surroundings.

The traces of the structures on the surface of
the earth describe an approximately planar lat-
tice. A set of traces with a single orientation
form a lattice of order 1; two sets with two
different orientations define a lattice of order
2; and so on. The lattice controls the locations
of pointlike features and creates a lattice dis-
tribution of points (Figure 2). The structural
lattice imposes an anisotropy on the areal dis-
tribution of points.

The definition of a lattice used here differs
from the more familiar concept of a crystal lat-
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Hypothetical relationships among pointlike features (dots), the structures
that may control them (solid lines), and recognized lineaments (paired dashed lines).
(a) Lineaments and structures coincide, some points not structurally control led, (b)
Lineaments underrepresent structures, (¢) Lineaments overrepresent structures, (d)
Spatial correlation of lineaments and

pointlike features is relevant to structural control only in the situation in

tice. A crystal lattice is deterministic: given
a unit cell, the locations of all ions in a
larger crystal can be specified. The structural
lattice is probabilistic: the distances between
lattice lines and the locations of points along
them are not specified; only the directions of
the lattice lines are determined. In addition,
the structural lattice may be sparsely populated
compared to a crystal lattice. In terms of
Chapman's proposal for the alkaline igneous
complexes, only a small fraction of the nodal
points may be occupied.

Thompson and Hager [1979] attempted to quanti-
fy the procedure of finding lattice directions by
specifying the minimum number of points reqguired
to define a lattice line. The maxima in the
frequency distribution of lattice line azimuths
were proposed as directions of structural
control. However, the criterion for selecting
the minimum number of points is not explained.
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Fig. 2.

Realizations of lattices and lattice distributions of points of order 1
(Figure 2a) and order 2 (Figure 2b) in circular regions

The order 1 lattice lines

have an azimuth of 35°; the order 2 lines have azimuths of -55° and 25°. azimuthal

distributions of these realizations are shown in Figure 5.
points of Figures 2a and 2b, respectively,

A fundamental difficulty not recognized by
Chapman {1968] or Thompson and Hager [1979] is
the faulty intuitive perception of a lattice line
as one that passes close to a large number of
pointlike features relative to other choices of
orientation. The number of points that fall
arbitrarily close to a line depends on two dif-
ferent characteristics of areal distributions:
shape and pattern. Shape refers to the areal
measure of a distribution of points as defined by
a closed curve containing them [Rogers, 1974].
Pattern refers to the intrinsic spatial ordering
of points, for example, on a lattice. Shape may
be independent of pattern in geological contexts.
The shape of the outcrop area of a group of
alkaline igneous complexes, for example, may
depend on coincidental factors such as where
erosion or deposition has revealed or covered the
complexes or how an investigator chooses to
define his study area. If the shape is elon-
gated, lines parallel or subparallel to the di-
rection of elongation may pass close to a large
number of points regardless of any lattice
pattern.

Most previous attempts to detect anisotropies
in areal distributions of points have been based

Figures 2c and 24 show the

without lattice lines.

on criteria that are poorly defined or intultive

or that depend on arbitrary choices. Two-
dimensional spectral analysis has proven useful
in geography and forestry [Ripley, 1981], but

spectral analysis is most effective when the
anisotropic structure 1s periodic, a condition
not expected for crustal structures. In order to
quantify the search for lattice directions an
appropriate statistic must be used to describe
the areal distribution of points. The distribu-
tion of this statistic should provide a means to
distinguish between areal distributions that are
random and those that are anisotropic. The defl-
initicn of the statistic and the procedure for
comparing its distribution with that expected
from random points must provide for removing
biases caused by shape.

The standard criteria used to distinguish
between random and nonrandom areal distributions
are based on the distribution of nearest-neighbor
distances [e.g., Kendall and Moran, 1963; Rogers,
1974; Bartlett, 1975]). However, a distance
measure is not well suited to represent the di-
rectional ordering expected in lattice distribu-
tions. Furthermore, a lattice imposes long-range
directional coherence that no nearest-neighbor
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Fig. 3. Schematic representation of the con-
struction of intersegment azimuths and the azi-
muthal distribution. Intersegments are con-
structed between all pdirs of points; the angle
of intersection of each segment or its extension
with a N-S line defines its azimuth. The azi-
muthal distribution is a histogram showing the
frequency with which azimuths occur. The hori-
zontal llne represents the average frequency per

cell.

statistic could detect. The orientation of a
line segment connecting any two polnts within the
areal distribution as a statistic is proposed
here (Figure 3). The azimuthal distribution of
the statistic in the absence of shape eff i
expected to be random if the areal distribution
is random but modes are expected at the azimuths
of any lattice directions (Figure 4). The
details of the procedure are presented later.

Applications

alkaline ring complexes are examples of dis-
crete geological features that appear as singu-
larities on a regional scale map. However, the
application need not be restricted to discrete
phenomena. Singularities defined by local maxima

and minima in continuous field variables (gravi-
tational, magnetic intensity), compositional
variables (chemical concentration, mineralogic
mode), or topographic elevation can also be
analyzed. Analysis of maxima or minima in con-
tinuous data may be more reliable than inter-
preting lineaments in contoured data: extremae
are first-order characteristics of data, whereas
contouring involves a complex and somewhat arbi-
trary technique. Furthermore, the analysis could
be extended to other approximately planar
surfaces, for example, mineral distributions on
thin sections.

In this paper, application of the procedure is
illustrated with reference to the plutons of the
White Mountain magma series [Chapman, 1968],
structural change points in West Virginia
[Werner, 1979}, and magnetic anomalies in the
Delaware-Pennsylvania Piedmont {Thompson and
Hager, 1979].

Results

Azimuthal Distributions: Shape and Pattern

A line segment connecting two points in an
areal distribution (intersegment) defines an
azimuth. The azimuthal frequency distribution is
sensitive to the presence of anisotropies: modes
in the frequency distribution tend to occur in
the lattice directions. This is illustrated for
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Fig. 4. Averaged azimuthal histograms from 10U
random simulations of an order 1 lattice (Figure
4a) and an order 2 lattice (Figure 4b) in cir-
cular regions. The lattice directions and the
expected distances between lines and between
points on lines are identical to those used to
generate the realizations 1in Figure 2. The

dashed lines show the average freguency per cell.
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lattices of order 1 (Figure 4a) and order 2
(Figure 4b) by average frequency distributions
formed by Monte Carlo simulations of lattice
distributions. In each case, the expected dis-
tances between lines and between points on lines,
as well as the directions of the lines, were
specified. However, the actual distances were
determined by randem exponentlal variates.
Therefore each simulated lattice distribution 1s
a result of two sequential Poissonlan processes.
The term "realization" will be used to refer to
the result of carrying out a simulation based on
expected values by means of random variates. The
effect of shape on the freguency distributions
has been eliminated by sampling a circular region
of the lattice.

The modes of the average histograms accurately
reflect the lattice directions (Figure 4). The
sharpness of the peaks results from averaging
many simulations: random variations tend to
average out, while frequency in the lattice di-
rections tends to accumulate. For any individual
simulation (for example, those shown in Figure 2)
much more variability in the size and location of
the mode or modes is expected (Figure 5). Thus
the azimuthal distribution can only be expected
to detect anisotropies within probabilistic
limits. For example, repeated simulations show
that given the characteristics of the lattice of
which Figure 2b is a realization, both of the
anisotropic directions would be accurately repre-
sented by modes in one realization out of five.
At least one direction would be determined accu-
rately in seven cases out of 10. The efficiency
of detecting a lattice from the azimuthal distri-
bution is improved if more points are included.

Figures 4 and 5 show how the intersegment
azimuthal distribution responds to a lattice
pattern in the absence of shape effects. Simi-
ijarly, the effect of shape in the absence of
pattern is considered: Average frequency distri-
butions are generated from simulations of random
‘patterns of points within curves bounding elon-
gate -regions, for example, ellipses (Figure 6).
Once again, the averaging of large numbers of
simulations reduces random variation. A mode
occurs in the direction of maximum elongation,
and the height of the mode is roughly propor-
tional to the square of the elongation ratio
(major axis/minor axis). The distribution
quantifies the strong bias involved in attempts
to "see" lattice directions. The same bias af-
fects any method based on finding lines that pass
close to the largest number of points.

When both a lattice pattern and an elongation
are present in an areal distribution, the fre-
quency modes that can result independently from
pattern and shape are superimposed. If the
analyslis were restricted to circular regions the
shape effect could be eliminated. However, de-
pending on the density of points and the shape,
too few points may occur within any circular
region. Furthermore, artificially restricting
the shape prevents the investigator from selec-
ting a study area based on geologic criteria. An
alternative solution developed here is to sepa-
rate the effects of shape and pattern. Sepa-
ration is possible because the shape effect is
characterized completely by the configuration of
4 curve bounding the areal distribution. There-
fore it is possible to use Monte Carlo simula-
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Fig. 5. Azimuthal histograms of the lattice
realizations shown in Figure 2. Figure 5a
results from the distribution in Figure 2c¢; and
Figure Sb results from the distribution in Figure
2d. The dashed lines show the average frequency
per cell.

tions to find the azimuthal freguency distribu-
tion that results from shape alone and use it as
a null distribution against which the observed
distribution can be compared.

The proposed procedure is shown schematically
in Figure 7. An areal distribution of n points
is characterized by a shape curve; a bounding
polygon is used in this paper (Figure 7a). Re-
peated simulation of n random points within the
shape curve can be used to form the distribution
of frequency within each histogram cell which
occurs from random variations in the pattern of
points (Figure 7b). The mean of the simulated
frequency in each cell can be used to normalize
the histogram derived from the observed points,
consequently eliminating the shape effect. The
limit of random freguency variation at some level
{say 95%) can be used to establish the likelihood
that modes in the normalized histogram exceed the
frequency expected from random variation (Figure
7¢).  The directions indicated by modes are the
most probable directions of anisotropy.

Construction of Azimuthal Histograms

The histograms of intersegment azimuths are
not meaningful unless the effects of uncertain-
ties in the locations of points are included.

The locations of pointlike features must be
estimated: For example, the center of an alkaline
igneous complex is estimated from the map distri-
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Fig. 6. Average azimuthal distributions resulting from random distributions of points
in elongated regions. azimuthal distributions were calculated for 50 points generated

at random within the shape curves shown.
100 sets of such simulations.

The distributions shown are the averages of
The shape curves are (a) an ellipse with an elongation

ratio of 2.5:1 with its major axis oriented N60PE and (b) an ellipse with an elongation

of 5:1 with its major axis oriented N30°W.

bution of alkaline igneous rocks which form the
complex. The size of the outcrop area and ir-
regularities in its form, Or 1n €xposure, lead to
The distance
between two points also must be taken into ac-
count: the farther apart they are, the smaller
the contribution of uncertainties 1n their loca-
tions to the uncertainty of their intersegment
azimuth.

The azimuthal uncertainty can be modeled as a
statistical distribution that describes the
probability that the azimuth falls within certain
limits (Figure 8). Provided that the angular
uncertainty 1s small compared to 180°, the uni-
variate normal distribution 1s sufficiently accu-

uncertainty in its location.

rate. Azimuths that have large angular uncer-
tainties contribute negligibly to the formaticn
of modes and can be deleted from the analysis
The frequency distribution of azimuths 1is
formed by summing the probabilities of the indi-
vidual intersegment azimuthal distributions over
the histogram cells (Figure gc). The histogram

contains a net freguency equal to the number of
intersegments, N. N is related to the number of
points, n, by N = n(n-1)/2. 1If there are k
histogram cells, the expected frequency in each
cell, & = n(n-1)/2k. For k=18, if n = 20, ¢ =
10.6; if n = 50, ¢ = 68.1; and if n = 100, €
275.

To compare the observed histogram with the
simulated histogram, the uncertainties in the
location data must be incorporated in the simula-
tion. It is not clear how this can be done most
effectively. In this paper the uncertainties of
the observed points are assigned randomly to the
simulated points. This straightforward choice
assumes that the location uncertainties can be
treated independently of the locations. In other
words, the lattice-forming process is assumed to
affect the arrangement of point features without
any effect on the degree with which we can locate
them. The veracity of this assumption must be
considered with regard to individual applica-
tions.
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Statistical Analysis

The analysis of the azimuthal distribution of
intersegments seeks to determine whether an ob-
served distribution is consistent with a random
pattern of points. More specifically, one tests
whether or not the frequency within a given
histogram cell is the result of a random pattern.
Two statistical hypotheses can be formulated: (1)
a null hypothesis, H_, in which the cell frequen-
cy is that expected from random points, and (2)
an alternative hypothesis, H_, in which the cell
frequency exceeds that expected from random
points. Cell freguencies significantly less than
expected from random points are not predicted by
the lattice model and are not considered as part
of the alternative hypothesis. The hypotheses
pertain individually to each cell which forms the
histogram; therefore a test on any particular
cell is independent of the other cells

A fiducial distribution consistent with the
null hypothesis must be available to compare to
the observed distribution. In applications to
orientations of linear features the binomial
distribution (with equal probability in all
cells) is often applied [e.g., Hay and. Abdel-
rRahman, 1974]. However, while the azimuth of a
random line has an equal chance of falling within
any azimuthal cell, an azimuth defined by two
points chosen at random may not because of the
shape effect. Although the normalization of the
observed distribution eliminates the shape ef-
fect, it obviously does so by transforming the
cell frequencies, and the applicability of the
binomial distribution to the transformed data is
not certain.

An alternative to the binomial distribution is
an empirical distribution based on an ensemble of
Monte Carlo simulations, each simulation based on
n random points located within the bounding poly-
gon., The empirical distribution of frequencies
within a particular azimuth cell i (Figure 7b)
provides a fiducial distribution if a large
number of simulations are made. The comparison
between observed and fiducial distributions is
thus made individually for each of the defined
histogram cells. This approach contrasts with
the use of the binomial distribution and elimi-
nates a problem: histograms must be tested for
departure from uniformity with regard to specific
alternative hypotheses (e.g., unimodal, bimodal,
etc.). Since the number of modes is not known a
priori, general statements about significance
levels cannot be made. However, the empirical
distributions pertain to individual cells, and
thus hypotheses about cell frequency can be
tested without reference to the form of the
entire azimuthal distribution.

The normalized azimuthal cell frequency and
the limiting frequency at some significance level
a can be calculated on the basis of the expected
cell frequency, ¢, and the mean frequency of cell
i for the empirical distribution, éi (1 = 1,k).
The normalized cell frequency éi is defined as

Ao ek
e ‘(c/ei)e i
where e*; is the observed frequency of cell 1
similarly, a critical value of the empirical
distribution, Li(u), is related to the critical
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Fig. 7. A schematic illustration of some aspects
of the azimuthal analysis. (a) A convex bounding
polygon characterizes the shape of the areal
distribution of observed points.- (b) Monte Carlo
simulations of random points within the bounding
polygon are used to generate empirical probabil-
ity distribution functions (P) of the frequency
within individual histogram cells. The mean fre-
quency of cell i, Ei, is a measure of the shape
effect in the absence of anisotropy and is used
to correct the observed frequency of cell i. A
value of frequency, Lj, which is exceeded with
probability o (the area under the curve to right
of L. is @), is the empirical upper critical
value at the o significance level. (c) The cor-
rected cell frequencies and the critical values
for each cell are used to construct the corrected
azimuthal distribution. The azimuths of cells
with freguencies higher than the critical values
(dashed line) are directions of anisotropy at the
o significance level.

value for the normalized distribution by
L.(a) = (c/e; ) Lyla)

provided that the empirical frequency in a cell
is sufficiently large the distribution is
approximately normal and the critical points can
be estimated from the standard deviation S
using the t distribution:

L(a) = (c/é;)tla,v)'s;
where v is one less than the number of
simulations used to generate the empirical
distribution.
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Fig. 8.

A schematic illustration of the formation of observed azimuthal distributions

from points whose locations are-subject to uncertainty. (a) Location uncertainties
(dashed circles with radii of one standard error) lead to an angular uncertainty on the
estimate of the azimuth (solid lines diverging from center line). (b) The angular
uncertainty on a single intersegment azimuth 1is represented by a probability distribu-
tion function; the highest probability is in the direction of the segment connecting
the points. (c) The probability distribution functions for each intersegment azimuth

are integrated within histogram cells to form the azimuthal distribution.
than one cell.

may contribute to the frequency in more

Corrected frgquencies éi that exceed the
critical value L;(a) have a probability of o or
less of resulting from an 1sotropic distribution
of random points. For small O, say 0.05, it is
highly probable that an anisotropy exists in the
direction represented by cell i. However, as
noted previously, even areal distributions gen-
erated by Monte Carlo simulations of a lattice
process do not always yield azimuthal histograms
with modes that accurately indicate the anisotro-
py. If & is less than L(0) for each cell, there
is no clear evidence for anisotropy: either no
anisotropy exists, or the anisotropy cannot be
detected from the data.

Each azimuth

Whether the calculated critical value actually
rejects H, at the ¢ significance level depends on
how well the simulations reproduce the statistics
of the observed distribution in every way other
than with respect to anisotropy-. For example, 1f
the points within the bounding polygon actually
composed two subregions with different densities
of points, simulations of a single homogeneous
distribution would not be comparable. However,
the effect of heterogeneous densities on the
correlation process and significance levels 1s
difficult to predict. As a first approximation,
visual inspection of data to avoid obvious het-
erogeneities should be made. More sophisticated

———— )
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means to detect and characterize density varia=
tions le.g., Diggle, 1983] can be utilized 1in
future work. The analysis of point patterns 1is
so complex that the critical values should be
treated more as suggestions of significance
rather than as hard and fast limits, as in the
manner that Mosteller and Tukey [1977] refer to
indicators. Cells that approach or exceed a
chosen limit should invite further statistical
study or field work rather than outright rejec-
tion or acceptance of the null hypothesis

Theoretically, there is no limit to the number

of points which can be used in the analysis. AsS
noted previously, the efficiency of detecting
lattice distributions is diminished by small
numbers of points. However, the efficiency also
depends on several other factors not known a

priori and thus guidelines for a lower limit to n

would not be meaningful. However, a practical
upper limit of several hundred points exists,
since the time required to perform the calcula-
tions increases roughly as n”.

Applications

White Mountain magma series. Chapman [1968]
recognized "strikingly apparent” NNW and E-W

trending lattice directions in the plutons of the

White Mountain magma series. To test Chapman's
hypothesis, azimuthal histograms for the loca-

50 km

Fig. 9. Map of 34 white Mountains complexes used
in the azimuthal analysis (Figure 10). The radius
of each point is equal to the uncertainty on the
location. The short-dashed lines show the
bounding polygon defined by six of the points.
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Fig. 10. Azimuthal distributions for 34 plutons
of the White Mountain magma series (Figure 9).
The uncorrected distribution (Figure 10a) con-
tains a large, broad mode in the NNW direction of
elongation. This mode 1s absent in the corrected
distribution (Figure 10b), and no cell frequen-
cies approach the 95% critical values (dashed
line). The average frequency per 10° cell is
31.2.

tions of igneous complexes in New Hampshire and
Maine were constructed. The locations were de-
termined from state geologic maps (New Hampshire
{Billings, 1955] and Maine [Hussey, 19671) and
include virtually all complexes shown by Chapman
[ 1968, Figure 29-2]. Location uncertainties for
the center of each complex were based on the size
of the complex and the degree to which a center
was defined by ring structure or by its shape.
The locations of 34 points included in the analy-
sis are shown in Figure 9. Some complexes shown
on Chapman's map were not used in this study
because they fell in the fringes of the main
group of complexes and tended to form hetero-
geneous regions within the shape curve.

The 34 complexes define 561 intersegments,
each of which has a well-defined azimuth when the
uncertainties are taken into account. The azi-
muthal freguency distribution of the data 1is
shown in Figure 10a. The shape of the area in
which the complexes crop out 1is defined by a
convex polygon (Figure 9). Thirty-four points
generated at random within the polygon and as-
signed the uncertainties estimated for the obser-
vations yield a distribution of azimuths for a
realization of a random pattern. Any modes in
the distribution are expected to result solely
from the shape effect. However, any single
realization of a random pattern does not provide
a good estimate of the shape effect. Therefore
300 separate simulations of 34 points each are
used to define empirical probability distribution
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Fig. 11.

Map of structural change points in West Virginia [from Werner, 1979, Figure

4]. The size of the points is approximately equal to the uncertainty in their loca~
tions. The dashed line delimits a group of 128 points that were used in the azimuthal

analysis (Figure 12).

functions (Figure 7b) and to calculate a cor-
rected azimuthal distribution for the White
Mountains {(Figure 10b).

The complexes define a NNW trending outcrop
area. The effect of the elongation on the azi-
muthal distribution is obvious by comparison of
the uncorrected distribution (Figure 10a) with
the corrected distribution (Figure 10b). The
corrected distribution contains no modes that
approach the 95% critical value. The striking
arrangement perceived by Chapman (NNW and E-W
grid lines) was evidently a result of the shape
of the White Mountain province and not the result
of an intrinsic lattice pattern. It should be
emphasized that the azimuthal analysis does not
prove that linear crustal structures have not
controlled the locations of the White Mountain
plutons but that such an hypothesis cannot be
proven using the available data.

West Virginia: Structural change points.
Werner |1979]} suggested that structural change
points (SCP) in southern West Virginia were con-
centrated along photolineaments representing the
38th parallel lineament. The distribution of the
SCP on Werner's [1979, Figure 4] map suggest that
their density may be somewhat lower in the
southwestern portion of the state. A homoge-
neously distributed subgroup (roughly east of
81°45'w longitude) of 128 SCP (Figure 11) were
used to construct an azimuthal histogram. Their
locations were estimated from Werner's figure.
The uncertainty in this case was dominated by
measurement precision because of the small scale
of the map. The standard error in x and y co-
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Fig. 12. Azimuichal distributions for 128 struc-
tural change points in southwestern West Virginia
[werner, 1979] (see details in text). The uncor-

rected distribution (Figure 12a) and the cor-
rected distribution (Figure 12b) are similar: the
area is not highly elongated (Figure 11). The
N35°FE cell nearly equals the 95% critical value
The average frequency per 10° cell is 449.
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289E This direction does not corre hond well

ts of
photolineaments 1in this part of West Virginta

with the orientations of any of the se

lverner, 1979, Figure 2] and 1is substantially
different from the trend of the 38th parallel
lineamant (N@SOEL
rigure 6) trend N35°E in the northern part of the

Magnetlc axes [Wernar, 1979,

study area, and a connection betweoen the features
that cause these anomalies and the SCP seems more
Likely than a connection between the 5CP and

photolincaments.

rlva

Delaware-—

ia piedmont: Magnetic

that
fractures could explain the orientations of
faults, joints, and magnretlc contour lineaments
in the rocks that make up the piedmont of
Delawa—e and southeastern Ponn

Thompson and Hager 11979 proposed

several nearly orthogonal sets of crustal

rlvania. They
also suggested that preferred directions in the
distribution of magnetic closures reflected a
similarly complex distribution of fractures
oriented: N85°wW ana NSCE, N50TW and N359E, and
135%%w and N48®E [Thompson and Hager, 1979, Figure
51, They suggested that magnetic highs and mag-
netic lows individually followed the same
patterns.

To test their hypothesis, the locations of
magnetic contour closures were measured from
Thompson and Hager {1979, Figure 9}; a total of
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#ig. 13. Map of magnetic anomaly contour

closures [from Thompson and Hager, 1979, Figure
9]. Magnetic highs are shown by solid shapes;
magnetic lows by open Curves. The entire set of
195 closures was used in the analysis shown in
Figure 14. The dashed lines delimit two sub-
regions that were analyzed separately (Figure

15): a set of 41 points south of the E-W line and
a set of 60 points to the east of the N-S line.
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Fig. 14.. Azimuthal distributions for 125 mag-
netic closures in the piedmont of Delaware,
pennsylvania, and Maryland [Thompson and Hager,
1979 (see text for details). The uncorrected
distribution (Figure 14a) contains a large, broad
mode in the ENE directlon of elongation. HoOw=
ever, this mode is only partly due to shape since
it persists in the corrected distribution

(Figure 14Db).
on N60PE exceed the expectations of a random
pattern at the 0.05 significance level. The
average frequency per cell is 428.

rour adjacent 10° cells centered

125 ¢closures was found (Figure 13). The uncer-
tainty on each point was made proport1onal to the
average size of the closure. Individual azi-
muthal analyses of 53 magnetic highs and 72 mag-
netic lows confirm the hypothesis that they fol-
jow the same pattern. However, the pattern 1is
more simple than Thompson and Hager hypothesized.
The lows define a mode extending from N60OE to
NBOOE, and the highs define & mode extending from
W40°E to N70°E: both modes are broad and overlap.
Analysis of the combined data yields a broad mode
centered on N60°E: four adjacent 10° histogram
cells exceed the 95% critical value (Figure 14).
There is no suggestion of northwesterly trending
anisotropies or orthogonal anisotropies. The
width of the mode may indicate that several sets
of structures exist with nearly parallel traces
or that the structures are not linear but
arcuate.

Discussion

Two aspects of azimuthal analysis that require
further discussion are the method of locating
various features by means of their centers and
the uncertainties that are attached to these
locations. Two cases can be distinguished with
regard to locating centers:

1. Mapped features are those that are of
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measurable size on ths scale of interest and
which therefore have shapes. For example,
igneous complexes may differ in their degree of
completeness, but it may be possible to approxi-
mate the shape or an estimated reconstruction of
the shape by simple geometric forms such as cir-
cles, ellipses, or combinations of them. The
geometric center of such an ideal shape can then
be constructed.

2. Defined features are those that are essen-
tially "dimensionless" and for which a shape
curve would not be appropriate. Examples might
be earthquake epicenters or structural change
points. For these features the location of the
center may be given numerically in a primary
reference or may be represented by a "point" on a
map.

Locations can be measured in virtually any
coordinate system provided that it is oriented
properly with respect to north. However, care
must be taken to avoid introducing distortions
that affect angular relationships. For example,
xerographic copying of maps can lead to aniso-
tropic distortion of scale and should be avoided.

Uncertainties on locations include both preci-
sion and accuracy. Precision is relatively easy
to characterize since it depends on the repro-
ducibility of measurements. Inportant factors
may be the scale of the map, the fineness of
divisions on a measuring rule, or the character-—
istics of a digitizing table. However, precision
is probably an insignificant portion of the total
uncertainty in the case of mapped features.

Accuracy relates to the "meaningfulness" of a
location in terms of a hypothetical model for the
origin of the feature. For example, an igneous
complex may be partially exposed in the field as
a roughly semicircular mass; other complexes in
the same province that are well exposed may be
central complexes with nearly circular forms.

The most straightforward assumption is that the
former, too, is circular in form. However, the
accuracy of this assertion may be nearly
impossible to evaluate.

In many cases of practical interest the median
distance between points 1s much larger than any
realistic uncertainty. In such a case, the un-
certainties contribute little to the standard
errors of most of the individual azimuths (Figure
8) and therefore have little effect on the azi-
muthal distribution. Likewise, an overestimate
or underestimate of the uncertainties only af-
fects the relatively small proportion of azimuths
for which the interdistance is small compared to
the uncertainty. However, if the median distance
is comparable to the size of the uncertainties,
misestimates affect a large proportion of the
azimuths and may be more important to the
azimuthal distribution.

The uncertainties on the observations a
reproduced by the Monte Carlo simulations
Therefore it is unlikely that misestimates of
uncertainties could lead to a false indication of
aniisotropy. If false modes are to be avoided it
may be better to overestimate rather than
underestimate uncertainties.

Subsampling Areal Distributions

The interpretation of azimuthal. distributions
rests on the assumption that one and only one

lattice pattern exists everywhere in the study
area. Subsampling an areal distribution can be
used to test the validity of this assumption and
to characterize departures from it. A homoge-
neous lattice distribution should yield the same
azimuthal distribution for data taken from any
subregion. If the distribution is heterogeneous,
then different directions of anisotropy may be
found in different subregions. Subsamples could
vield anisotropies even if a larger region does
not: regional variations in lattice patterns may
effectively mask the pattern on the large scale.

To illustrate how subsampling works, consider
the magnetic contour closure data from Thompson
and Hager [1979]. The azimuthal distribution for
their data has a broad ENE mode that suggests
that there are either several subparallel sets of
structures or that the structures are arcuate
rather than linear. The latter hypothesis
receives support from the fact that magnetic
contour lineations trend E~W in the southern part
of the mapped region [Thompson and Hager, 1379,
Figure 4]. As a test, two subregions were
analyzed: a set of 41 points south of approxi-
mately 39945'N; and a set of 60 points north of
39945'N and east of 76%40'Ww (Figure 13). The
azimuthal distributions are similar to one
another (Figure 15) and to the distribution for
entire data set (Figure 14). These results thus
support the hypothesis of subparallel features
rather than regional variations in direction

Data could also be sorted in ways other than
by area. For example, sorting magnetic anomaly
data by type (high or low) has already been
covered in the results section. Magnetic anoma-
lies could also be sorted with respect to the
basement lithology with which they are as-
soclated, although there are too few data in
Thompson and Hager's study to attempt this
Igneous complexes within a single province may
have been emplaced at different times and could
be sorted by age.

Subsampling can also help to interpret results
that might otherwise be ambiguous. For example,
an azimuthal mode that does not exceed the 95%
critical value could result from either an essen-
tially random pattern or from a pattern with a
weak anisotropy. Data from different subareas of
a random pattern are expacted to yield indepen-—
dent azimuthal distributions: there is an equal
probability of a mode occurring in any histogram
cell. However, a pattern with a weak anisotropy
might produce similar azimuthael distributions
from different subsamples. 7Thus subsamples that
produce modes in the same direction are likely to
come from an anisotropic pattern although the
mode might not exceed the 95% value in any single
case.

A Problem: Structural Grids

Azimuthal analysis determines the trends of
structures but does not provide any other infor-
mation about their spatial distribution. For
example, commonly utilized statistics pertaining

to fractures such as average spacling or average
length cannot be obtained. The analysis does not
locate individual structures. Thus 1t does not
provide a straightforward alternative to spatial
correlation of pointlike features and structures
The inherently probabilistic nature of azi-
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Fig. 15. Comparison of corrected azimuthal dis-
tributicns of magnetic contour closures in the
Piedmont [Thompson and Hager, 1979] (see text for
details) from two different subareas. The pat-
terns of both the southern subarea (Figure 15a)
and the northeastern subarea (Figure 15b) are
similar to that of the entire area (Figure 14b).
A homogeneous pattern of subparallel, ENE
trending anisotropies 1s suggested.

muthal analysis guarantees that any spatial de-
scription of the structures will also be probabi-
listic. Thus structural grids of the type pro-
posed by Chapman which associate every point with
a line are unrealistic. An alternative to a
deterministic grid is one that shows the most
likely locations of those structures that are
associated with a relatively large number of
points. The construction of even such a provi-
sional grid would be complex and will not be
considered in this paper

Conclusions

The large-scale structures of the earth's
crust are expressed in a wide variety of forms:
no single type of data could be expected to
provide a complete description of them. Similar-—
ly, no single type of analysis can be entirely
adequate. The information derived from azimuthal
analysis may be complementary to that given by
standard spatial statistics, and the information
provided by pointlike features may be complemen-
tary to that derived from linear features.

The importance of azimuthal analysis is that
it yields new information from a previously un-
tapped, or poorly tapped, set of data. Other
methods for dealing with directional characteris-

tics of opointlike features have been discus
the introduction; they fail in one of two

1. They do not extract directional inform
-

et

tion intrinsic to areal distributions of poir

5]

1
but instead compare the locations of points to
the locations of linear features, the orienta-
tions of which must be specified prior to the
analysis,

2. They rely on arbltrary or inaccurate
concepts of how intrinsic patterns can be
identifisd.

Azimuthal analysis 1s an improvement on other
methods because of three innovations:

1. The azimuth of an intersegment is used as
the fundamental measure of an areal distributiocn
of points. The freguency distribution of inter-
segment azimuths is constructed from all pairs of
points; therefore it is sensitive to hoth long-
and short-range patterns expected from lattice
distributions. Without such a measure it would
not be possible to quantify anisotropy.

2. The azimuthal distribution responds to
both pgttern and shape. The shape of an areal
distribution is characterized by a bounding poly=-
gon that makes 1t possible to guantify the shape
=ffect via Monte Carlo simulations of random
patterns. Thus the observed azimuthal distribu-
tion can be corrected for shape. Without a shape
correction an analysis of anisotropy in elongated
areas would be inaccurate.

3. Monte Carlo simulations provide empirical
confidence values for azimuthal freguencies that
can be used as guides to interpreting azimuthal
distributions. Distributions that exceed or
approach specified limits invite further work,
either by statistical means or by gathering more
data in the field.

The use of azimuthal analysis does not guaran-
tee that all structural anisotropies within a
given area can be detected. Rather, it provides
a gquantifiable, reproducible limit to the direc-
tional information that can be reliably extracted
from a point pattern. Applications of azimuthal
analysis to data from other published reports
suggest that there has been a tendency to over-
estimate the complexity of information available
from point patterns
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