Western Oregon University
Master Plan Update

February 2006

Western Oregon University
Tom Neal
Paul Finke
Master Plan Update Committee Members

SERA
Gregg Sanders, AIA
John Echlin, AIA
Eric Ridenour
Allison Wildman

Walker Macy
Charles Brucker, ASLA

Boatwright Engineering
Aaron Sutton, PE

KJM Program and Construction Management
Dave Noonan

Celebrating 150 years
Western Oregon University
1856-2006
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADA</td>
<td>Americans with Disabilities Act</td>
</tr>
<tr>
<td>BETC</td>
<td>Business Energy Tax Credit</td>
</tr>
<tr>
<td>DAS</td>
<td>Department of Administrative Services</td>
</tr>
<tr>
<td>DPSST</td>
<td>Department of Public Safety Standards and Training</td>
</tr>
<tr>
<td>FEMA</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>HSS</td>
<td>Humanities and Social Science</td>
</tr>
<tr>
<td>ITC</td>
<td>Instructional Technology Center</td>
</tr>
<tr>
<td>LEED</td>
<td>Leadership in Energy and Environmental Design</td>
</tr>
<tr>
<td>OMA</td>
<td>Oregon Military Academy</td>
</tr>
<tr>
<td>OPA</td>
<td>Oregon Police Academy</td>
</tr>
<tr>
<td>ORS</td>
<td>Oregon Revised Statute</td>
</tr>
<tr>
<td>OUS</td>
<td>Oregon University System</td>
</tr>
<tr>
<td>PE</td>
<td>Physical Education</td>
</tr>
<tr>
<td>SCUP</td>
<td>Society for College and University Planning</td>
</tr>
<tr>
<td>SEED</td>
<td>State Energy Efficiency Design</td>
</tr>
<tr>
<td>WOU</td>
<td>Western Oregon University</td>
</tr>
</tbody>
</table>
Contents

1 Introduction

 Executive Summary..5

 Western Oregon University Master Plan Update..............7

2 Process

 Planning and Design Process..11

 Initial Design Concepts...11

 Committee Guidance..18

 Study Areas..19

3 Program Elements

 Program Elements..23

 Priority Projects and Programs...23

4 Master Plan

 Master Plan Update Map and Annotated Map

 Introduction..27

 Planning and Design Principles..27

 Master Plan Update..28

5 Development Guidelines

 Introduction..35

 Urban Design..35

 Historic Preservation and Adaptive Re-use.......................37

 Sustainability and Resource Efficiency.........................39

 Open Space..41

 Circulation and Parking..44

 Campus Landscape Design..49

 Infrastructure...52

6 Cost Analysis

 Cost Estimate Summaries and Phasing.............................57

7 Appendix
I. Introduction

Executive Summary

Introduction to the Update
Executive Summary

This Master Plan Update overlays the 2000 Master Plan, supplementing some sections from that document, and replacing others. This Update specifically addresses six priority projects identified for the three biennium from 2007 to 2013. There is a change in emphasis from an ambitious growth program to more modest projects based on slower growth and the departure from the campus of the Department of Public Safety Standards and Training (DPSST).

Six priority projects are expected to be built under this Update:

- renovation of and an addition to the Oregon Police Academy (OPA) building and the relocation of the Computer Science, Business and Math programs from inadequate facilities this building;
- seismic repair and renovation of the Humanities and Social Sciences building;
- new residence hall(s) for approximately 250 students;
- a new student recreation center;
- a new performing arts facility; and
- expansion of the natural sciences program into new facilities.

The limited amount of construction expected under this Update requires that the University seek the maximum benefit from each project to meet campus planning goals. The most important gaps in the existing fabric of the campus are identified and the anticipated projects are sited to help repair these gaps. Most important of these design goals is the establishment of an appropriate pedestrian link between the student residential area and the academic core of the campus.

In addition to physical planning and building siting, this Update reviews policies that will apply to campus development. Policies for historic preservation and adaptive reuse of buildings have been made more systematic and comprehensive. This addition recognizes that previous guidelines were perceived on campus as being too limited in their approach to preservation. Also, more refined sustainability policies have been included to reflect the growing emphasis in our culture on environmental responsibility, as well as the fact that Oregon law and resolutions have created specific policy requirements. Open space and circulation guidelines have been revisited and elaborated to make the campus plan more cohesive. These policies are intended to build on the rich character of the campus and to ensure its qualities over the long term.

Impacts to infrastructure systems have been reviewed based on the growth projected here, and updated, more comprehensive cost estimates have been conducted. Detailed program studies were not included in the 2000 Master Plan and were beyond the scope of this update.
Aerial view of Western Oregon University
Introduction

Western Oregon University (WOU), currently celebrating its sesquicentennial, is the oldest institution in the Oregon University System. It was founded in 1856 by pioneers who travelled on the Oregon Trail. Today, it continues a long educational tradition as a comprehensive university of approximately 4,600 students who are primarily Oregon residents. WOU is the only mid-size public university in the mid-Willamette Valley. The university offers over 40 bachelor’s and three master’s degrees through its two schools, the School of Liberal Arts and Sciences and the School of Education. It offers one of only three accredited teacher education programs in the state.

Western Oregon University Master Plan Update

The Western Oregon University Master Plan Update (referred to throughout as the “Update”) is not intended as a wholesale replacement of the 2000 Master Plan, but rather as a review of that plan against conditions that have emerged in the intervening six years. As discussed below, several key background assumptions of the 2000 Plan have changed. Also, a few policies articulated in the 2000 Master Plan have been reconsidered by the University's leadership.

The main goals of the Update are to:

- **identify critical issues** in the physical design and function of the campus;
- articulate a set of **design priorities** for the campus, and
- to give guidance on how a limited number of priority projects can help **achieve campus wide goals** and stimulate new projects.

A key difference between this Update and the 2000 Master Plan is in the general approach to the designation of building sites. While the 2000 Plan allowed some flexibility in site planning, the Update included area plans which were very prescriptive in nature and included a level of site planning typically beyond the scope of a master plan. This Update does not include that level of graphic presentation of site specific areas, although in a few cases site specific studies have been made to test the ability of a site or location to accommodate planned development.

Assumptions

Western Oregon University’s campus will undergo significant changes under this Update, primarily in relation to the departure of the Oregon Police Academy (OPA), or Department of Public Safety Standards and Training (DPSST). The OPA has been a part of the campus since the 1970’s and will be vacating a complex of three centrally located buildings, Maaske Hall, Oregon Police Academy, and Arbuthnot Hall. The departure of this program provides a number of opportunities.
that were not expressed in the 2000 Master Plan.

Six projects have been identified as part of an Oregon University System (OUS) funding request for the next three biennium (2007 - 2013). These projects were named as part of a strategic planning process prior to this Master Plan Update. As part of the Update, the projects were presented to the Update Committee to verify their priority. The Master Plan Update specifically addresses these six projects.

The growth projections on which the 2000 Master Plan were based have to date not been fully realized. However, there remain several clear priorities for investment in the campus infrastructure that are necessary to serve the existing campus and more modest growth, as well as strategic goals for the campus.

As an Update, the goals of this plan were not necessarily the same as those of a full new Master Plan. At the initiation of the Master Plan Update process, the project team and Western Oregon University Master Plan Update Committee (“Committee”) conducted a session to determine what the Update “Is” and what it “Is Not.” The essence of those statements is captured in the sidebars.

In addition, specific assumptions of the 2000 Master Plan were reviewed and in several cases challenged by this Update’s project team or oversight committee. Assumptions that were largely carried forward include the major zoning elements, the definition of the campus core, the desire for improved pedestrian connections, the removal of parking to the campus perimeter and the bulk of the urban design guidelines.

Assumptions that were challenged include enrollment projections, the general tendency of the 2000 Plan to call for replacement rather than re-use of existing buildings, the lack of specific criteria for preservation of historic buildings, and the assumption that funding would be primarily from OUS.

The building siting decisions articulated by the 2000 Master Plan have been revisited to reflect the following contributing factors: limited building resources, increased preservation efforts, and the prioritization of campus design problems.

Master Plan Update Policies and Relation to the 2000 Master Plan

Where policy statements in the 2000 Master Plan are directly contradicted in this Update, the Update shall prevail. Elsewhere, the policies and guidelines of the earlier plan shall remain in effect. An example of this would be the urban design guidelines. Many of those guidelines remain in effect, but some have been modified to reflect this Update’s less prescriptive approach to site plan designations.

In some cases, entire policy sections of the 2000 Master Plan are replaced by a parallel section in this Update. Examples of this include the historic preservation
goals and the sustainability section. Historic preservation policies have been revisited in part due to an increased appreciation of the University’s architectural heritage, as well as a desire to make a more consistent set of guidelines for building reuse. Sustainability policies have been expanded in recognition of legislative mandates, emerging technologies and strategies, and the increasing knowledge base about the severity of human impacts on the environment. For sections that are replaced in their entirety, the new section herein will state that intent in the introduction.
2. Process

Planning and Design Process

Initial Design Concepts

Committee Guidance

Study Areas
Planning and Design Process

Introduction

The consultant team relied on a select group of University faculty and staff (listed at right) to help guide the master plan update process and ensure that the team’s recommendations reflected the short- and long-term goals and objectives of the University. The Western Oregon University Master Plan Update Committee formally met with the team three times during the project: first for a tour of the campus and an initial discussion of opportunities and challenges at the University; then for a work session / charrette on three design concepts; and, finally, for a review of the draft plan before final submission.

Between the second and third meetings with the Committee, the team met weekly with project managers from the University to discuss iterative design concepts and issues. Issues that could not be resolved in these meetings were taken to the Committee or other University groups by the project managers for discussion and resolution.

Initial Design Concepts

The Master Plan Update design concept evolved from the Committee’s work on the three initial design concepts, which the SERA team developed in November 2005 and are discussed in detail on the following pages. Referenced as “Main Street,” “Village Green,” and “Satellite,” the design concepts were exaggerated to illustrate how different expansion schemes would affect circulation and relationships between buildings on the campus. The “Main Street” design concept focused building development and pedestrian circulation primarily along Monmouth Avenue. The “Village Green” concept treated the Grove as the center of campus and oriented buildings and pedestrian circulation toward the greenspace. The “Satellite” design concept distributed buildings throughout the campus according to their cluster or neighborhood (i.e., residential, arts, physical education, etc.), and had a circulation pattern that radiated from the corner of Monmouth Avenue and Church Street. A fourth design concept, “Westward, ho!”, was discussed by the design team but was not brought to the Committee due to its inherent design flaws. This design concept clustered all new buildings on the western edge of campus, which is currently undeveloped and used for athletics and agriculture.

The design schemes primarily focused on the arrangement of six projects, two of which are renovations to existing buildings. In addition, the design team also identified locations for future buildings to strengthen a concept or take advantage of future opportunities. These sites are identified simply as “future possible building site.”
Main Street

The Main Street design concept treats Monmouth Avenue as the heart of the campus and aims to orient new development and pedestrian circulation to this spine. The six building arrangements included:

- Renovation of the Oregon Police Academy building and part of Arbuthnot Hall to house business, computer science and, potentially, mathematics;
- Renovation of the Humanities and Social Sciences building;
- A new 250-bed freshman residence hall fronting Monmouth Avenue, on the site to the north of the Hamersley Library;
- A new recreation center sited just to the north of the New Physical Education building;
- Replacing seven modular buildings with a new performing arts center adjacent to Rice Auditorium;
- Anchoring the southern entrance to the campus with a new science building.

Key circulation and design features of the concept included:

- Orienting all main building entrances to Monmouth Avenue;
- Prioritizing Monmouth Avenue and Church Street as pedestrian zones with restricted vehicle access from Church Street to Stadium Drive on Monmouth and from Monmouth to the Parking Lot H entrance on Church Street;
- Constructing service roads to the east and west of Monmouth Avenue for building and grounds service and thru-traffic;
- Replacing Maaske Hall with open space;
- Deconstructing the northern section of Arbuthnot Hall;
- Creating a gateway to the campus by anchoring the south entry with the natural science building and with two new buildings to the north;
- Anchoring intersection corners with new buildings;
- Establishing key pedestrian / open space corridors to Monmouth Avenue from both sides of campus;
- Preserving Parking Lot H north of the Werner University Center.
Process
Village Green

A key tenet of the Village Green concept proposes that the Grove is the heart of campus and that new buildings and pedestrian circulation patterns should be oriented to this center. The six building arrangements included:

- Renovation of the Oregon Police Academy building and part of Arbuthnot Hall to house business, computer science and, potentially, mathematics;
- Renovation of the Humanities and Social Sciences building;
- A new 250-bed freshman residence hall on the existing site of Parking Lot H, with its main entrance oriented to the Grove;
- A new recreation center sited to the north of the New Physical Education building;
- Anchoring the southern entrance to the campus with a new performing arts building;
- A new natural science building on the site north of Hamersley Library.

Key circulation and design features of the concept included:

- Orienting key buildings to the Grove to create a 24-hour student zone;
- Replacing Maaske Hall with open space and connecting it to the Grove with a pedestrian greenway corridor;
- Deconstructing the northern section of Arbuthnot Hall and replacing it with a new building;
- Reconfiguring service access to Werner University Center and the Physical Plant to eliminate through traffic;
- Replacing Parking Lot H north of the Werner University Center with a residence hall.
Satellite

The third design concept, Satellite, clusters the six buildings with existing buildings that have similar uses. For example, a new residence hall would be sited close to existing residence halls, or the new performing arts building would be in the vicinity of the existing auditorium and music hall. This design concept pinpoints the heart of campus at the junction of Monmouth Avenue and Church Street and radiates pedestrian circulation pathways in all directions to smaller activity nodes throughout campus. The six building arrangements in this scheme included:

- Renovation of the Oregon Police Academy building and part of Arbuthnot Hall to house business, computer science and, potentially, mathematics;
- Renovation of the Humanities and Social Sciences building;
- A new 250-bed freshman residence hall located near the University Park Conference Center, north of Stadium Drive;
- A new recreation center sited to the north of the New Physical Education building;
- Replacing seven modular buildings with a new performing arts center adjacent to Rice Auditorium;
- A new natural science building on the site where the existing tennis courts are located, north of the Old Physical Education Building.

Key circulation and design features of the concept included:

- Creating a distinct pedestrian-priority corridor between a new performing arts building and the western entrance to Werner University Center;
- Relocating the Physical Plant to the western edge of campus (Boiler stays in existing location);
- Replacing Parking Lot H with open space to formalize the predominant diagonal path of travel from Valsetz to Werner University Center;
- Reorienting access to the Boiler;
- Replacing Maaske Hall with open space;
- Clustering new academic buildings around the new open space and the renovated Oregon Police Academy building.

The site located to the north of Hamersley Library was left undeveloped in this concept to provoke discussion about the future of the site.
Committee Guidance

The design team came away with strong recommendations from the Committee for the final design scheme. Some of the key comments summarized include:

• Consider a residence hall on a site north of the Grove

• PE/Rec location near the south area of campus should be explored and emphasized. The Committee recommended that the team consider the impact on parking by locating near Old PE, a possible building location on Church Street, the potential impact to New PE, the potential impact on tennis court relocation, and creating a building that links the indoors with outdoors.

• The south end of campus needs to establish and develop an entry sequence. The focus should emphasize the image of the University as seen traveling along Monmouth, as well as the “everyday” image that follows students, staff/faculty and visitors for major events.

• Define the program for Performing Arts.

• Consider pedestrian access to the center of campus from perimeter parking areas. The team should focus on a pedestrian route along Church Street. The potential to close Church Street as a pedestrian zone should be considered.

• Strengthen the pedestrian circulation diagonal that presently travels through Parking Lot H from northwest to southeast campus.

• The debate on closing Monmouth to through traffic should be explored and resolved. There was no consensus for closing Monmouth, with several people noting that traveling up and down Monmouth in a car helped promote the University’s image in the community.

• Explore the idea of an alternate north-south bypass along Warren Street regardless of closing Monmouth.

• Placing the Performing Arts building to align with Church Street was considered desirable. Doing so may also provide an opportunity for a pedestrian-only pathway connecting the Performing Arts area to Monmouth-Church intersection.

• Consider creating a Live/Learn academic hall instead of a single-use residential hall before establishing a preferred location.

• Removing Maaske to create an open space was considered very desirable.

• Consider the rhythm of open and built space along Monmouth when placing buildings.
Design Principles

Taking the Committee’s comments and recommendations into consideration, the consultant team developed a series of design principles to guide the final master plan design. The principles address pedestrian circulation, building placement, historic preservation, rhythm, vehicle access, infrastructure, open space, sustainability, and implementation. These principles helped synthesize the collective goals and the objectives of the University, recommendations from the Committee, funding realities, and physical constraints on the campus. The design principles are discussed in detail in the “Master Plan” chapter of this document.

Study Areas

Three areas on campus required additional study and tests to see if proposed design concepts could be implemented on the ground. These areas included the site north of Hamersley Library (“Parking Lot M”), Parking Lot H and Physical Plant, and the tennis court/Old Physical Education site.

Parking Lot M

The test on this particular site was to determine if two buildings, specifically academic and/or residential live-learn facilities, could be reasonably situated on the site with enough room for service access and on-site parking. Preliminary sketches to scale (figures below) determined that two buildings could be built on the site and would continue to emphasize the building and open space rhythm established along Monmouth Avenue to the south. The site’s proximity to the dining hall, library, and university center rendered the site very appealing for a live-learn residential building, whereby students would live above ground-floor classrooms and meeting rooms. Rear parking would replace the quasi-formal...
parking currently on the site and provide rear access for service vehicles.

Parking Lot H and Physical Plant

This site, perhaps the most challenging of the three, was tested to determine if a residence hall or live-learn facility could be built on the site. The site’s challenges included the presence of fixed underground utilities, including a 36” storm water line, service and loading access for Werner University Center and the Physical Plant, a strong diagonal pedestrian desire line, parking displacement, the location of existing structures (the University Center chiller, in particular), and storage needs for Physical Plant.

Several tests were completed for both building placement and loading configurations (figures below and on following page). The tests concluded that although a residence hall or live-learn facility could be situated on the site, the consultant team felt that the site was ultimately too constrained to accommodate pedestrian circulation, loading needs, and on-site parking and service access in a cost-effective manner.

The central role of this site on the campus is recognized and addressed in this Update. As discussed in the “Master Plan” chapter of this document, this Update calls for a combination of open space and a building site in this area.

Tennis Courts / Parking Lot F

Southeast across Parking Lot H

Northwest from the University Center

Sketch loading diagram for Parking Lot H
Option A
Hammerhead configuration that utilized the existing roadway but significantly impacted The Grove.

Option B
Hammerhead configuration that did not impact The Grove as much as Option A, but required constructing a new access road closer to the University Center, impacting pedestrian circulation and comfort.

Option C
Modified hammerhead configuration that did not impact The Grove as much as Option B, but still impacted pedestrian circulation and comfort, and made for a somewhat awkward turning maneuver for trucks.

Option D
Loop driveway that allowed trucks to enter and exit from Church Street. Significantly impacted pedestrian circulation and was costly to implement but allowed for some innovative pedestrian treatments on Church Street.
Process

This site is very desirable for an academic building due to its proximity to other academic buildings. There is also potential to create a stronger quadrangle in this area by orienting new buildings to the open space. However, because the existing buildings are tightly spaced together, a preferable building site would encroach into the existing parking lot (Parking Lot F). This issue could be resolved by extending a new section of surface parking to the west along Church Street.
3. Program Elements

Program Elements

Priority Projects and Programs
Program Elements

The objective of the Master Plan Update was to review and incorporate specific proposals for six short- to mid-term projects which Western Oregon University has identified through its strategic planning and ongoing review of existing facilities capacities. The projects have been attached to planning strategies for the next three funding biennium (2007 - 2013). A summary of the needs that warrant them are described below.

Parallel to this Update, several of these projects have pursued funding and have, in some cases, secured funding commitments from the OUS and/or other sources. Each of these projects and their rationale were reviewed by the design team in consultation with the Master Plan Update Committee.

Priority Projects and Programs

Computer Science/Business/Math (OPA Remodel and Addition)

These three programs are all currently in facilities which are in disrepair or are an especially poor fit for the program. Computer Science is currently housed in the Instructional Technology Center (ITC) which was built in 1915 and cannot readily accommodate modern technology infrastructure. Math is currently in Arnold Arms which is in serious disrepair and would not be economical to renovate. Business is currently in West House, which has inadequate mechanical systems and does not comply with accessibility requirements.

With the forthcoming departure of the Department of Public Safety Standards and Training, the Oregon Police Academy building, Maaske Hall, and Arbuthnot Hall will become vacant. A study of this complex (Soderstrom, October 18, 2005) has found that Maaske and Arbuthnot Halls are essentially at the end of their useful lives, but that the OPA structure can continue to serve the University with appropriate renovations. This first priority project will include the demolition of Maaske Hall and the renovation and expansion of OPA to house the three programs most in need of new facilities.

A portion of the general education program in this building will replace the classrooms currently located in modular facilities located near Rice Auditorium. Those modular units will be removed from their current site as part of this project.

The OPA building is approximately 20,000 SF and an addition of about the same amount is projected to house these programs. The working budget is in the $12-$13 million range. Funding has been secured for the core of the project, though some additional funding may be needed for related projects such as the modular removal and associated site work.
Program Elements

Humanities and Social Sciences

A seismic upgrade of the Humanities and Social Sciences (HSS) building has been identified as a top priority for the University. In addition, the building is in need of improved envelope systems for better energy efficiency, accessibility-compliance measures, hazardous materials abatement, mechanical and electrical upgrades, and improved technology infrastructure.

The HSS building is approximately 35,000 SF. Funding for this project has been secured, including Federal Emergency Management Agency (FEMA) grants tied to rehabilitation of the structure. The funded budget is approximately $3 million. This project is essentially equivalent in priority to the OPA rehabilitation project and may start before the OPA conversion.

New Residence Hall

On-campus housing for first-year students is a recognized need for the University. Current residential capacity is a limiting factor in fulfilling Strategic Plan goals to increase first-year enrollments. Arbuthnot Hall will be available for temporary ‘surge’ space, but in the medium-term (3 - 5 years) a new residence hall is warranted. The project is budgeted at $11.2 million.

Student Recreation Center

Collegiate recreation facilities have been recognized nationwide as an effective recruitment and student retention tool. They also are effective at building community among students and faculty, and in some cases, the larger community. A recreation center would include a variety of facilities and programs, including aquatics, intramural sports, open recreation, club sports, aerobic and fitness classes, multipurpose courts, and locker and changing areas. The project is budgeted at $21.2 million.

Performing Arts Center

The performing arts facility is intended to provide a venue for the University’s growing art and music programs and space for display of student artwork. The facility would also serve as a community facility for the region and help foster relations between the University and the larger community. The performance space would seat 1,200. This project has been budgeted at $21.3 million based on preliminary programming.
Natural Sciences Expansion

The existing science building is inadequate in both the quantity and quality of space for science programs. A new laboratory and teaching building is required to continue development of the science curricula at the University. A budget of $16.5 million has been projected.
4. Master Plan

Master Plan Update Map
Master Plan Update Annotated Map
Introduction
Planning and Design Principles
Master Plan Update
Potential future building site

Public-private development opportunity

Future building site (live - learn)

Residence Hall

Todd Hall

Maple Hall

Campbell Hall

Services

Health

Werner University Center

Old Physical Education

Natural Science Academic Programs

Heritage Hall

Oregon Military Academy

Hamersly Library

Education Building

Rice Auditorium

ITC - North

ITC - South

ITC

Smith Music Hall

Admin.

Physical Plant

Valsetz Food Service

New Physical Education

HSS

OPA

BCS

addition

25

Performing Arts

Business / Comp. Science

HSS

4

Recreation Center

1a

Natural Science

3

Residence Hall

6A

Natural Science

3

Residence Hall

6B

Natural Science

3

Residence Hall

b

3
c

Residence Hall

tennis courts

Future building site (alt. Natural Sciences site)

48" PIPE

Significant Open Space

Green Corridor

Green Street

Proposed building location

Renovated existing building

Existing Building

Potential Future Building Site

Eliminated Building

Parking Lot

Primary Pedestrian Pathway

Secondary Pedestrian Pathway

Pedestrian Activity Node / Destination

Vehicle Circulation

Significant Open Space

Green Corridor

Green Sheet

Significant vegetation

Swale alignment

Major Pedestrian Crossing

Minor Pedestrian Crossing

Legend

Priority Projects

- OPA Remodel
- Humanities and Social Sciences
- Residence Halls
- Recreation Center
- Performing Arts
- Natural Science

Master Plan Update

Figure 1
Residence Halls
These buildings will help to define the character of the Grove and stimulate activity in this otherwise under-utilized open space.

The open space taken from the Grove would be compensated by the creation of a crossroads plaza on the area now used as Parking Lot K.

The intent is to set these buildings into the green space, which is a pattern typical of all residence halls on campus, in order to preserve many of the mature trees on the edge of the Grove.

Natural Science
The selected site provides proximity to the existing science teaching facility and helps to enclose one of the most defined open spaces on the campus. This quadrangle is a focal point of the campus and includes a mix of campus uses: academic, recreational and administrative.

The design intent is to provide a strong western terminus to a cross axis that begins at Smith Hall. The site would also strengthen north-south circulation along the corridor that stretches from Old PE northward to Valsetz Hall.

Recreation Center
This site takes advantage of proximity to the Old PE complex and helps enclose the southern quadrangle.

The design intent is have the building serve as a southern terminus to the north-south corridor from Valsetz Hall, and provide a community presence on Jackson Street to the south.

The design intent is to provide a focal point of the campus and can provide an excellent interface between the University and the community.

The site is on a highly-visible edge of campus and can provide an excellent interface between the University and the community.

The circulation system in the area would be improved by extending the Warren Street right-of-way for service and other non-University through traffic. This would mitigate a lot of the through traffic on Monmouth Avenue, making it safer and more enjoyable for pedestrians.

This remodelled complex would have a major entry to the new open space at the center of the campus, helping to energize this plaza as the meeting ground between academic and residential/student life areas.

Humanities and Social Science Remodel
A seismic upgrade and other improvements to this existing building will provide an opportunity to improve the surrounding open space and create a better frontage along Monmouth Avenue.

This building is one of the plainest buildings set among some of the grandest buildings on the WOU campus. Its upgrade will need to address multiple important facades and a complex circulation system in this part of the campus.

Master Plan Update Annotated Summary

Figure 2

- Residence Halls
- Natural Science
- Recreation Center
- Performing Arts
- Humanities and Social Science Remodel

Legend
- Proposed building location
- Renovated existing building
- Exisiting Building
- Potential Future Building Site
- Eliminated Building
- Parking Lot
- Primary Pedestrian Pathway
- Secondary Pedestrian Pathway
- Pedestrian Activity Node / Destination
- Vehicle Circulation
- Significant Open Space
- Green Corridor
- Green Street
- Significant vegetation
- Swale alignment
- Major Pedestrian Crossing
- Minor Pedestrian Crossing
Introduction

As discussed in the “Process” chapter of this document, several conceptual approaches to the campus plan were tested in the development of this Master Plan Update. Through this review, key planning issues were identified:

- Address the conflicting demands on areas in the center of the campus between pedestrian circulation and parking and service access;
- A desire to site the next generation of building projects in a way that will reinforce the pedestrian nature of the campus while recognizing the character of the campus as buildings set in a series of open spaces;
- Create distinct districts of the campus devoted to residential and academic uses;
- Recognize the importance of Monmouth Avenue to the image of the campus;
- Explore the importance of the Grove as a potential focus of residential life on campus.

Planning and Design Principles

As a result of the project team’s review of these issues, the following Campus Planning and Design Principles were formulated. In some cases, these were either explicit or implicit in the 2000 Master Plan. The 2000 Master Plan did not directly articulate the principles on which planning decisions were made or evaluated.

- Provide for safe, direct and comfortable pedestrian circulation between major campus destinations.
- Reinforce and continue the prevailing pattern that locates parking at perimeter areas of the campus and enhances the walkable nature of the campus core.
- Concentrate academic activities along Monmouth Avenue generally, and in the southern end of the road in particular.
- Develop sites on the campus that represent gaps in the development pattern of the campus or that would create better connections between existing centers of activity.
- Create and reinforce existing relationships between buildings and open space; create a reinvigorated role for the Grove in campus life.
- Choose building sites that are not overly complicated by infrastructure and circulation issues that would make new construction unnecessarily expensive.
- Recognize the value of historic structures from both a practical and a cultural point of view.
Master Plan Update

This Master Plan Update has a tighter focus than the 2000 Master Plan and is primarily focused on the six priority projects identified in the Introduction. In addition, future potential building sites have been identified as second-tier priorities because they strengthen planning and design principles, such as completion of partial quadrangles or infill on important street frontages. It is intended that building projects under this Update have the maximum benefit for larger campus planning goals.

Key Planning Zones

Five key zones on the campus warranted special attention in the Update: (1) Monmouth Avenue and the buildings that front on it; (2) the site north of the Hamersley Library; (3) the central area of transition from the residential part of the campus to the academic areas; (4) the Humanities Quad that is enclosed Todd Hall, Campbell Hall, Maple Hall, HSS, Natural Sciences, and the Old PE complex; and (5) the eastern area around Rice Auditorium.

Monmouth Avenue Frontage

As the central spine of the campus, Monmouth Avenue creates the first and strongest impression of Western Oregon University. It is a key travel corridor, many of the core buildings have a frontage on the street, and it is very accessible to the public and campus visitors. There is a major building site available north of Hamersly Library, which will play a role in shaping the campus. This Update makes recommendations for new and renovated buildings along Monmouth Avenue.

During the study for this report, the following aspects of Monmouth Avenue were analyzed and should be kept in mind for future campus planning efforts. The north end of Monmouth Avenue ultimately would be a good site for additional development in order create a stronger gateway at the northern entrance to the campus. The west side of Monmouth Avenue in the block where West House is currently sited has a special role as a bridge between the campus and the community of Monmouth. This site should be kept in mind as a potential site for joint University-private development projects. A mixed-use building with housing over retail that could benefit from the campus population would be a particularly good fit.

Parking Lot M - North of Hamersley Library

The site north of Hamersley Library, if not fully built on under this Update, obviously would be a primary site for future construction beyond this planning horizon. The Master Plan Update Committee and consultant team both recognize the value of this site to the academic programs of the campus and strongly recommend that this area be used for an academic program, or a combination of academic and residential functions (i.e., a live-learn model). It should also be noted that this site
is large enough to house two buildings at densities appropriate to the scale of the campus and should be developed as such. In designing the next building in this area, project design teams should take care not to preclude use of the remainder of the site.

Central Campus Transition Area

Perhaps the most important campus planning goal of this Update is to successfully link the residential and academic zones of the campus across the central campus area, which is currently dominated by Parking Lot H. One of the major pedestrian circulation corridors through the campus is broken by this parking lot, leaving students and others to cross through the lot. For this reason, this site has been identified as a major opportunity site.

Consistent with guidelines in both this Update and the 2000 Master Plan, the parking function in this area will be reduced to the minimum needed, and will be used as both open space and a building site. As described below, this Update calls for an expansion of the existing OPA building to accommodate business, computer science, and mathematics, and new residence halls to border this area and be designed to strengthen and shape this central campus space. The goal is to create a strong circulation plaza that will act as an intentional transition space between the academic areas and the residential areas.

In order to make a strong central plaza on the Lot H site and accommodate service and delivery vehicles, a loop road will surround the area. This new road would provide truck access to the loading docks at Physical Plant and Werner University Center, as well as move-in/move-out needs at the new residence halls. Screening and landscape elements should be added to the fleet lot at the Physical Plant to reduce the perception of service functions in this area. These elements are further described in the Access and Circulation section of the “Development Guidelines” chapter of this document.

Humanities Quad

There is a major center of activity behind HSS and Campbell Hall. This area has many of the qualities of a traditional campus quadrangle and this Update recommends increasing the sense of enclosure and proximity of functions by locating new buildings in this area. The multiple functions in this quad, from administration and academics to student life and athletics, create a strong sense of the campus that should be valued and enhanced.

East of Monmouth Avenue

The area around Rice Auditorium offers several opportunities to improve the campus. The Performing Arts facility would have a natural synergy with Rice Auditorium and is sited here by this Master Plan Update. The facility is sited as an eastern terminus of Church Street to increase the prominence of the corridor.
and to provide high-visibility for the facility. Church Street is to be extended as a greenway creating a strong pedestrian linkage east from the Werner University Center to the Performing Arts area. Further, the circulation system will be completed to provide an eastern service loop road that will relieve Monmouth Avenue of additional service traffic, much as the existing western loop road does.

Priority Projects Sites

The selected sites for each of the six priority projects are described below, including site-specific guidelines for orientation and important connections to be made in project-level site design. Refer to the Master Plan Update map (Figure 1) for site locations and context and to the preceding chapter (Program Elements) for a full description of these priority projects.

1. **Math/Business/Computer Science (OPA facilities renovation and addition)**

 The central area of the campus, immediately west of the OPA complex, is currently dominated by parking and service and lies directly between the student life area of campus and the academic core. A significant number of pedestrians weave through the parking lot to access these parts of campus and the parking lot has become a de facto pedestrian corridor.

 Expansion of the Oregon Police Academy building to house these programs will be to the north of the existing building. It is intended for this addition to have an important point of entry from the new open space on the Lot H site. Building this expansion to the west of Arbuthnot Hall will allow Arbuthnot Hall to be used as temporary housing until the residence halls are constructed. If needed, the OPA addition could be further expanded eastward to Monmouth Avenue after Arbuthnot Hall has been removed.

2. **Humanities and Social Sciences (HSS)**

 Renovation of the HSS building will be largely confined to the existing site. In addition to the structural and functional upgrade, it is intended that the renovation contribute to the campus planning goals of:

 - providing a better presence and sense of entry to Monmouth Avenue
 - helping to shape and define the quad that lies both north and south of the ‘back’ wing of the building, and;
 - providing a more consistent and compatible architectural feel to campus buildings.

3. **Residence Halls**

 The residence hall(s) called for in this plan are sited along the eastern and northern edge of the Grove. The open space displaced by the new buildings will be replaced with a new plaza-type space to the east on the site of Lot H. The intent of
this siting is to meet the following goals:

- locate residence halls in proximity to Valsetz Dining Hall;
- avoid major infrastructure relocation in developing new sites;
- better define the Grove as a physical space and provide more student presence on the Grove;
- contribute to a central open space that will better facilitate circulation through the campus core, and;
- help shape an east-west circulation path from the northeast corner of the PE facility to Monmouth Avenue, in a direct line passing north of Werner University Center.

The new residence halls should be set back far enough into the Grove to preserve mature trees as a green space in front of the buildings. This design concept of residential buildings surrounded by green space is consistent with other residential buildings on campus, regardless of their era or style.

Given that the exact size and program of the next residential facilities cannot be precisely determined at this time, flexibility has been built into the siting of this facility. The facility could be accommodated on the two sites located on the north and east edge of the Grove (labeled “a” and “b” on the Update map). If necessary, a third residence hall could expand on a third site, either north of New PE (labeled “potential future building site” on Update map) or north of Church Street along the eastern edge of the Grove (labeled “c” on Update map). Both of these ‘overflow’ sites help to shape the Grove and to link it to the student life portion of the campus.

4. Recreation Center

The new recreation center will be sited as an addition to the west of the complex known as “Old PE.” This site allows for optimal use of limited construction funds by linking the renovation of the existing structures to the new construction. From a campus design perspective, this location will help create a strong southern anchor to the circulation system that runs north-south from Valsetz to the academic core. The site location of the recreation center intends that the facility have dual fronts, one providing a strong entry on Jackson Street and the other to the proposed Humanities Quad behind HSS. These entries will anchor and strengthen the north-south circulation system.

5. Performing Arts

The Performing Arts facility is sited adjacent to Rice Auditorium. This site is currently occupied by modular classrooms, the function of which will be accommodated in the OPA renovation project discussed above. The Church Street Greenway and Warren Street extension, described in subsequent sections on Open Space and Circulation, will be completed as part of this project.
Success for this type of facility often depends in part on its visibility and presence in the community. For that reason, this building should be designed to have a prominent role as a lantern at the eastern end of this major cross-campus axis. There are opportunities in this facility layout to take advantage of shared facilities with Rice Auditorium and benefit from the site’s location on the edge of campus.

6. Natural Sciences Expansion

The expansion of Natural Sciences is the only project to have multiple sites suggested in this Update. The final site selection will depend on a full programming exercise for the proposed building. If the facility is a wholesale replacement of existing science facilities, then the building should be located on the site immediately north of Hamersly Library (labeled Natural Sciences ‘B’ on the Master Plan Update map). This would help to complete the streetscape along Monmouth Avenue and would place the library in a central location among academic buildings.

However, it is possible that the project may simply be an expansion of particular facilities (e.g., labs) that are outmoded in the existing sciences building. If this is the case, the site labeled Natural Sciences ‘A’ (see Update map) is the preferred location for a new facility due to the proximity of the buildings. The buildings will need to be close to one another for access and collaboration. This site serves several campus design goals including helping to enclose and define the proposed Humanities Quad, and shaping and further activating the north-south pedestrian corridor.

Development of the Natural Sciences ‘A’ site creates a strong cross-axis in this area, further defining the rhythm of open space and building massing along Monmouth Avenue. This axis will be anchored by Smith Music Hall to the east and the new natural sciences building to the west; both buildings would define an open space of similar proportion. With this goal in mind, it is desirable that a major entry to this building be located in the southeast corner and that it act as a ‘lantern’ to terminate the cross-axis.

Use of this site would require relocating some parking. This is consistent with the goals stated in the 2000 Master Plan and this Update to push parking to perimeter areas and make central areas available for pedestrian-oriented circulation and quality open space. In addition, the existing tennis courts should be relocated as they are in need of renovation and would not be a good fit with this central quadrangle concept.

Sites Identified Beyond the Six Priority Projects

This Update is limited in scope to primarily address the six projects discussed above. Inevitably, a design review of campus planning leads to further insight into the strengths and weaknesses of a campus configuration. This Update
includes designation of some additional sites to illustrate how they could reinforce the larger principles that have been articulated here. These sites should be considered in future planning efforts.

North of Hamersly Library

The vacant site next to the library is a very desirable and “construction-ready” site that could accommodate two buildings. Future programming for the Natural Sciences building may locate the facility on this site or at the Humanities Quad site. In any case, this vacant site on Monmouth Avenue is a prime building site and should be used for a major academic or live-learn program element.

South end of Monmouth Avenue

The block where West House is currently located is a strong site for a mixed use project that would help transition the scale of the campus to that of the town. There is an opportunity to collaborate with a private developer to create an attractive student or faculty housing component with neighborhood commercial on the ground floor.

North of New PE

The site directly north of New PE is identified as a potential residence hall site. This would help to shape the Grove as a student life amenity and provide more housing in proximity to Valszet Dinning Hall. If the site along the northern edge is not needed to fulfil the housing requirements in this report, it should be reserved as a future housing site.

Church Street, south of the Grove

The area across Church Street from the Grove offers a site that would have high visibility from Church Street and would further enclose the Grove. This site would be a good fit for student life and/or athletics functions.
5. Development Guidelines

Introduction
Urban Design
Histric Preservation and Adaptive Re-Use
Sustainability and Resource Efficiency
Open Space
Circulation and Parking
Campus Landscape Design
Infrastructure
Development Guidelines

Introduction

Policies and guidelines regarding how future building and site projects should be designed to contribute to an overall cohesive campus feel. The goal is not to be overly prescriptive, but to recognize the need and desire for both functional flexibility and creative expression in individual building projects. The terms “will” and “should” are used expressly for this reason throughout this chapter. Where the term “will” is used, the policy or guideline should be explicitly met. The term “should” provides guidance for strong design solutions.

The urban design guidelines are primarily concerned with functional goals, but also address issues that are important to the design of the campus as a whole. The historic preservation and adaptive re-use guidelines formally recognize the value of older buildings to the history of the campus and community, but also allow some flexibility to meet future campus needs. Sustainability guidelines are included to recognize that sustainability is one of the critical cultural issues of today and to address the sustainable strategies mandated by OUS. Open space is critical for defining the character of the campus. Guidelines presented here are designed to reinforce existing strengths on campus. Circulation and parking guidelines address the sometimes-conflicting demands of pedestrians and vehicle circulation in order to improve the safety and quality of the campus experience. Campus landscape design guidelines help ensure that the campus reads as a cohesive whole and that campus open spaces and paths are designed and implemented comprehensively. Infrastructure guidelines address the anticipated impacts on utilities and proposed solutions.

Urban Design

The goal of these guidelines is to assure a continuity of high-quality architectural design throughout the campus. Although building materials and methods may change over time, there should be similarity of scale, form, and color which allows the campus to retain its distinct image and character. Some of the urban design guidelines from the 2000 Master Plan are carried forward and reproduced in this Update, while others have been revised to emphasize a more descriptive approach.

Location, Placement and Orientation

Building sites under this Master Plan Update are intended to be descriptive, not prescriptive. Important campus design principles for each site are stated, but the Update does not attempt to define building footprints explicitly.

Building Rhythm

The prevailing rhythm on campus is a deliberate alternating pattern of building and open space. This pattern should be extended and reinforced with new building site
Development Guidelines

planning. A couple of buildings have deviated from this pattern in the past (e.g., HSS and Campbell Hall and Natural Sciences and Old PE) but the pattern is still a defining characteristic of the campus and should be emphasized.

Height Guidelines

Generally, buildings on campus should not exceed four stories and the tallest buildings should be located on the most central sites. University buildings at the edges of campus should step down further to respect the adjacent off-campus context.

Setback Guidelines

Building setbacks should relate to the adjacent open space or edge-scapes. In particular, a consistent setback from Monmouth Avenue will be respected. Buildings should be located so that they do not shade courtyards.

Exterior Expression and Articulation

The exterior design of buildings within the campus should be harmonious in character, scale, and general design. Similar expression of roof form, fenestration, floor lines, or building articulation will be used. Design strategies that make a clear distinction between the ground level, intermediate levels, and the roof line are strongly encouraged.

Building Entrances

Buildings on the campus which face a public street will express a sense of entry and have a design relationship to the street. Primary entrances will be easily identifiable from public streets, primary walks, and drives. Building entrances should related to or developed as public spaces incorporating courts, plazas, and pedestrian amenities.

Building Materials

Materials and methods of construction will be selected to be compatible with those used in existing buildings and which are appropriate for the building. Materials used should be similar in color, texture or pattern to those of other adjacent or related buildings. High-quality, long lasting, low-maintenance materials are encouraged. A palette of appropriate materials and the selection process should be addressed by the Sustainability Master Plan called for in this Update.
Historic Preservation and Adaptive Re-use

As the oldest campus in the Oregon University System, WOU has a unique role in the history of the state. Preservation of the oldest, most valued buildings on the campus is an effective way to keep this history present in the minds of visitors and the campus community. It must always be recognized that as a living, evolving institution, the University has to balance the demands of preservation with the need to accommodate emerging programs and functions.

This section establishes a set of policies to make consistent and clear decisions regarding when to preserve buildings and how to go about doing so. These policies replace the policies of the 2000 Master Plan in their entirety.

Historic Resources Oversight Committee

Create a campus Historic Resources Oversight Committee. This committee would review and provide direction for alterations to historic campus buildings and on decisions involving adaptive re-use of all major campus buildings.

To the extent possible, the committee will comprise a cross-section of the campus community, including representatives from the faculty, staff, students, and alumni. A liaison to the City of Monmouth’s Historic Buildings & Sites Commission should be included on the committee.

Historic Preservation

The intent of this policy is to preserve historic buildings on campus. The following buildings (with dates of original construction) are recognized by the University as historic elements of the campus. Decisions to alter or change the use of these six buildings will be reviewed by the Historic Resources Oversight Committee.

- Campbell Hall (1871)
- Todd Hall (1912)
- Administration Building (1936)
- Maple Hall (1913)
- The Cottage (1917)
- ITC Central wing (1915)

When alterations to these campus buildings are undertaken, design and construction teams will be required to demonstrate experience with the sensitive treatment of historic structures. To the extent feasible, alterations to historic buildings will follow the United States Secretary of Interior’s Standards for Rehabilitation.
Development Guidelines

Stability and Longevity

“Colleges and universities are important and remarkably stable components of their communities.

“The late Clark Kerr studied the longevity of institutions since the Reformation, over a 500–year period, and found that of 70 still in existence after five centuries, 66 were universities.

“If you live in a college town or near a large university, you have experienced the fact that although the mom-and-pop grocery stores may have been replaced by Wal-Mart, and the local manufacturing or other industries have vanished, the college or university is still there. Even though it may have undergone tremendous growth or change, it remains identifiable as itself and the campus is a landmark.”

From the Society for College and University Planning (SCUP), “We Rise to Play a Greater Part: Students, Faculty, Staff, and Community Converge In Search of Leadership from the Top”

Adaptive Re-Use

Re-use existing campus buildings when feasible and consistent with the Master Plan goals. As programmatic needs change and facilities are outmoded, WOU will maintain existing building stock of any period unless renovation is prohibitively expensive (e.g., >10% over the cost of replacement construction) or a building is found to be functionally obsolete.

Due to the subjective nature of what constitutes a functionally obsolete building, this term has been defined in this Update as:

- a building that cannot be adapted and rehabilitated without exceeding the cost of replacement construction of comparable quality, or;
- where the building’s location precludes the achievement of a larger campus plan goal.

This Update calls for replacement of both Maaske Hall and Arbuthnot Hall based on this definition.

Campbell Hall was one of the first buildings built on campus and is an important historic resource
Sustainability and Resource Efficiency

In recognition of the rapid decline of many of the natural resources upon which society depends, the University is committed to improved environmental responsibility. This Master Plan Update lays out clear, measurable, and appropriate standards to guide future investment on campus. The goal is to provide high-performance buildings and infrastructure that meet future campus needs while reducing impact on resources. These policies replace the “Conservation and Natural Resources” policies of the 2000 Master Plan in their entirety.

Campus Sustainability Plan

Western Oregon University will develop, during the life of this Master Plan, a campus sustainability plan that will include:

- A review of current policies and practices affecting the natural environment, including patterns of resource and energy consumption;
- Proposed strategies to minimize impacts and support natural systems;
- Involvement by a broad cross-section of the campus community, in order to increase the potential for success of the sustainability plan.

Refer to the Appendix for a detailed list of the elements of a campus sustainability plan.

Campus Sustainability Coordinator

The campus will seek the resources to create a campus sustainability coordinator position whose responsibilities will include implementing the Campus Sustainability Plan and working with administrative and academic divisions to promote sustainability on the WOU campus.

Sustainability Guidelines for New Construction and Building Renovations

For major new construction or building renovation under this master plan, project design and construction teams will be charged to take the following steps.

- Design all facilities to State Energy Efficiency Design (SEED) requirements, per current state law and OUS policies;
- Utilize an integrated design approach (see sidebar);
- Conduct a life-cycle cost (LCC) analysis on the most relevant strategies for each building project;
- Evaluate the potential to eliminate or reduce the need for conventional mechanical systems;
- Create a project-level sustainability plan including self-assessment under state-modified Leadership in Energy and Environmental Design (LEED) guidelines (see Appendix);
- Assess the cost of designing to LEED Silver (with Business Energy Tax

What is Integrated Design?

When design teams take a fresh look at the essential requirements of a building, they can often rethink the usual assumptions for how buildings perform.

These high-performance design strategies lead to significant savings in almost all building designs:

- Daylighting design (including optimal orientation and glazing) with occupancy controls and/or daylight sensors to reduce electricity usage
- Natural ventilation and/or hybrid cooling systems, which often can lead to significantly smaller mechanical systems
- Improved building envelope design (insulation, windows, roof systems, etc.)
Development Guidelines

Credit (BETC) requirements), Gold and Platinum levels, including applicable incentives (see Appendix).

LEED Certification

Under this Update the University will pursue, to the greatest extent possible, LEED certification of at least one campus building in each of the following categories: residence hall, laboratory/instructional building, and instructional/office building.

Facilities Management

The University will utilize the Department of Administrative Services (DAS)/OUS Sustainability Checklist for Operations and Maintenance of existing buildings as a guideline to facilities management practices (see Appendix).

Examples of Campus Sustainability

College and university campuses across North America have devised many innovative programs to improve environmental performance in response to their unique campus circumstances. Some examples include:

• Hazardous materials reduction through microscale chemistry at Bowdoin College

• “Green Cup” energy conservation competitions at Harvard and elsewhere

• Landscape restoration with native grasses at Nebraska Wesleyan University

• Green automobile fleet maintenance programs at the University of Kansas

• Local, spray-free food procurement program at Bates College

The careful admission of daylight into buildings reduces the need for electric lighting, but can also reduce the need for cooling and, as a growing number of studies indicate, may help increase performance by building users. This is an example of an integrated design strategy that solves multiple problems and has multiple benefits.
Open Space

By definition, a campus’ physical structure is organized around a rational series of corridors, buildings, and spaces. At Western Oregon University, the series is composed of an existing armature of Green Streets, Green Corridors, Significant Open Spaces, and Buildings. Defining an Open Space framework is a key component to resolving the basic circulation challenges and as development continues, will contribute to the overall quality of the campus grounds. More than just a collection of roads, buildings, and interstitial spaces, the Update re-imagines how the Open Space framework and campus might look and feel for generations to come (see Open Spaces Framework Plan below). In reference to the original historic campus layout, pedestrian circulation and green spaces worked in unison to connect a relatively small simple grid of buildings. A desire to return to this simple hierarchy and grid is the inspiration behind the framework.
Monmouth Avenue is clearly the primary spine of the campus, with the major academic, administrative, and student life buildings located along its walks. It also serves as a type of linear open space corridor that unites the various buildings, open spaces, and paths. Unity is achieved through its sidewalks, street trees, and continuous views. This primary Green Street corridor is intersected by a series of pedestrian walks (Green Corridors) and Significant Open Spaces. Moving north from Jackson Street to the Hamersly library, there is a perceivable and desirable rhythm of open spaces, corridors, and buildings.

As redevelopment continues along Monmouth Avenue, this pattern should be extended north with the removal of Maaske Hall, Arbuthnot Hall, and the addition of future structures north of the Hamersly library. These spaces should reflect the scale of the adjacent buildings, their role as either a hub of activity or as a travel corridor. Ideally the spaces should be at least 75-feet wide, but narrower spaces can be made to achieve the desired effect.

Green Streets

Examples of Green Streets on campus include Monmouth Avenue, Church Street, and the interior drives between Housing and Werner University Center.

As developed streets with mature trees and walks they are important and inflexible portion of the Framework. Potential improvements include adding planting along the south side of Church Street, additional center islands on Monmouth Avenue, and additional street trees along the interior drives.

A Green Street is a street with continuous walks, street trees, lighting, and, in some cases, on-street parking. New buildings are set back from the street to create a front yard that complements the scale of the building.
Green Corridors

Primary Green Corridors travel north-south from the housing district to the academic core and east-west from the library to New PE. Secondary Corridors run east-west north of Arbuthnot Hall, south of the library to Parking Lot B and, potentially, north-south at the back of the library. These corridors connect significant and memorable spaces to provide clear and efficient linkages. Potential improvements include the connection of New PE to the library and south from Church Street to the future Recreation Center.

Green Corridors vary in width and have a variety of walk types and widths. A typical Green Corridor would have an 8-foot (minimum) walk lined with trees and site lighting. Green Corridors should be a minimum of 75-feet wide but can be narrower in the right conditions. They are parallel to building faces and dotted with seating areas and benches.

Significant Open Space

The Grove, Rice Auditorium lawn, and the Smith Music Hall Quad are examples of existing Significant Open Spaces.

Defined by buildings and corridors, these spaces serve as expansive green rooms that provide places to gather, recreate, observe and, in some cases, serve as place holders for future development. They also provide a foreground for buildings, give relief to the density of the academic core, and act as a transition from the wide open athletic fields. Potential improvements include revitalizing the Grove, Academic Core, and Humanities Quad (see Landscape Design section).

Campus open spaces are typically expansive treed lawns with circulation passing in all directions. The Grove is an example of an underutilized open space that has the potential to be more integrated into campus life. Due to poor drainage, crowded trees, and lack of activity in its adjacent uses, it is rarely used to its potential.
Circulation and Parking

Given the remote nature of the University, the private automobile has a recognized role in serving the campus. However, the campus itself is relatively compact, with many students living on or near campus. The number of pedestrians on campus is significant and invaluable to the character of the University and is an important characteristic to emphasize. For this reason, this Update seeks to address the major existing conflict between auto- and truck-based traffic demands and the pedestrian circulation system.

Pedestrian Circulation

Pedestrian circulation is achieved through a hierarchy of roads, corridors, walks, and paths. This system is tied directly to the Open Spaces Framework and supports the movement of students and faculty. The current system is based on the convenience of connecting places of interest and lacks a clear order or structure. While adequate, pedestrian circulation is often less than clear and efficient. The Update seeks to define and create an organizing set of connections which provide clarity and order for visitors and convenience for students and staff.

Along Monmouth Avenue and Church Street, pedestrian circulation is relatively straightforward, with pedestrians separated from cars by sidewalks. During busy times of the day a circulation conflict occurs when pedestrians cross Monmouth to get from one side of the academic core to the other. This connection is handled through a series of raised and painted crosswalks. In other areas, there are constant conflicts between pedestrian paths and vehicular circulation. Most noticeably, the designed circulation network through Parking Lot H breaks down and leaves the pedestrian with no clear alternative to a haphazard path through the lot. The ‘desire line’ that exists between the residential and dining halls and Werner University Center creates a situation where many students and others walk through Parking Lot H to make this connection in a convenient way.

Under this Update, Parking Lot H will be removed (see the parking section below for a discussion of replacing its functions) and this core area of the campus will be reconfigured as a building site and open space linking the student life zone of the campus with the academic zones. An important goal of any construction in this area is to leave a direct line of sight and travel between the north entry to the Werner University Center and the southern end of the path through the residence area. Equally important, the design of new buildings that border this area will have significant entries from this area to energize the space with human activity. Eventually this space and corridor will be recognized as a central and significant campus space.
Parking

Several of the policy directives of the 2000 Master Plan are extended and reiterated by this Update. In particular, the 2000 Master Plan states that “a majority of parking will exist around the perimeter of campus in surface level parking lots.” This continues to be a campus goal and is reinforced in this Master Plan Update.

As discussed previously, the area now used as Parking Lot H is planned to become a critical link between the residential and academic portions of the campus (see figure below). The primary uses of this lot are currently for the Physical Plant fleet vehicles, some staff parking, and some commuter parking. Under this Update, a smaller lot for fleet vehicles will be maintained and a service road will be created to loop through the area. This will provide a modest amount of parking to serve staff of nearby facilities who need to park close by due to security concerns in the evening. Daytime parking users will be expected to use other existing lots on campus, several of which have been identified as under-utilized, and two new surface parking lots on the southern edge of campus.

![Pedestrian circulation and parking framework](image)
Parking Lot F will also be impacted by this Update with the addition of the Recreation Center and the Natural Science building. The phased development of these projects will occur on this site in order to remain close to their associated uses and reinforce the idea of the academic core. The buildings will be constructed on the east side of the lot adjacent to Old PE and the tennis courts. While these projects utilize Lot F as their building sites, significant parking and service access will be retained. In advance of construction, new parking will be constructed to replace what is lost. A portion of the displaced parking will be constructed to the south on the Arnold Arms and West House site. Additional parking will be added west of Lot F and south of the track alignment. These additions will be phased with the new construction and will further support the peripheral parking approach.

Traditionally campus parking areas have served dual roles. In the short term, these lots serve as a place to store automobiles. In the long term they serve as a ‘land bank’ for future development. Campus expansion and growth plan on keeping parking in a holding pattern for parcels adjacent to important academic and living facilities. As needs change, the land use can easily shift to new buildings or open space and the parking can slide toward the edge of campus.

The following policies regarding parking facilities are carried forward from the 2000 Master Plan. Parking structures are not anticipated under this Update, though they are not precluded.

Parking Ratios

The University will maintain or exceed the overall ratio of parking required by the City of Monmouth, one space per 2.5 students. Parking ratios are intended to ensure that parking is adequate.

Parking Location

Short-term parking, ADA parking and passenger pick-up will be provided near each building. Visitor parking should be located within 300 feet of buildings or facilities used extensively by the public. Where possible, parking will be accumulated and shared so that parking lots can be established and designed efficiently and aesthetically.

Standards and Dimensions

Standard parking spaces, either diagonal or straight-in, will be provided conforming to the standards of the City of Monmouth.

Surface Parking Lots

Surface parking lots will be setback from streets and buildings and screened with berms or landscaping. Pedestrian walkways will be designated through parking lots to provide safe and accessible passage for pedestrians and wheelchair users.
Security

Parking lots need to maintain clear lines of sight from adjacent walks and roads. The ability for pedestrians and security personnel to easily see into lots is an important part of their real and perceived safety. Planting adjacent to walks and parked cars should be kept below 3-feet in height.

Parking Structures

Parking structures may be considered in the future when economically feasible. Parking structures will conform to the Architectural Design Guidelines with regard to size, setback, scale and landscaping.

Parking Lot Standards

Permanent parking lots will be completely designed. All surface parking will be paved, drained and signed. Each lot will be designed according to appropriate standards for auto movement and parking. Parking lots will be landscaped on their perimeter to fit into the part of campus where they are located. The interior of parking lots will also be landscaped with trees, swales and plant materials to reduce the visual and environmental impact on the campus. Pedestrian walks which are lighted for safety and security and which direct users to major campus pedestrian ways will be included in larger parking lots. Clear signage and wayfinding is a key element for helping visitors move from the parking lots to their destinations.

Parking Transportation and Sustainability

As discussed previously, this Update calls for an increased and systematic review of campus policies that affect environmental sustainability. Inevitably, auto transportation and parking issues overlap with environmental policies in several crucial ways; therefore, these parking policies will be reviewed and refined as part of campus sustainability planning at the University. In particular:

- every effort will be made to keep parking ratios to legally required minimums, in conjunction with carpooling programs, transit incentives, and other transportation demand management tools;
- stormwater management standards will be adopted for any new or renovated parking lots;
- to the greatest extent feasible, shade provided by perimeter and internal landscaping will be used to help reduce the ‘heat island effect’ from exposed asphalt.

Service Circulation

The need for safe and clear circulation to buildings for service plays an important
role in campus planning. Service deliveries to Valsetz Dining Hall, Werner University Center, and the Physical Plant are of particular interest because these buildings have the greatest need for large truck access. This Master Plan Update calls for a new loop road, similar to that which currently serves the Valsetz loading dock, which would form a block around the Werner University Center, the OPA structure and its proposed expansion, and the new open space on the Lot H site. This road would have sidewalks to address the large pedestrian volume in this region of campus, and as discussed previously, would provide convenience parking for nighttime staff of nearby facilities. A primary role of this road, however, is to provide effective access to the loading docks at Physical Plant and the Werner University Center. The inevitable combination of service access and pedestrians will require careful scheduling and programming. Balancing service and delivery schedules with those of the students will allow this area to become an important circulation and social space.

Improved By-Pass

To further assist the reduction of automobiles and service vehicles traveling on Monmouth Avenue, the Master Plan Update seeks to create a new parallel by-pass. The by-pass is an extension of North Warren Street from Lot A north to the east side of the Education building and existing by-pass. In simplifying this connection, the University will achieve the following:

- Monmouth Avenue will be more *pedestrian-friendly* due to less through traffic;
- regional through traffic and service and delivery vehicles can easily *by-pass Monmouth Avenue*;
- the future performing arts building will have *clear public access*, and;
- *emergency vehicles* have additional points of access.

The construction of the by-pass will be coordinated with the development of the new performing arts building. In order to create the by-pass and extend North Warren Street, the antennae farm will need to be relocated and the parking directly east of the education building will need to be modified. The extension should be built to City of Monmouth standards and include sidewalks and landscaping.
Campus Landscape Design

Plantings

The Western Oregon University campus has a rich botanical heritage. Native and introduced plantings have resulted in a landscape of tremendous diversity and historical value that requires a strong commitment to preservation and revitalization. Planting recommendations are outlined by selected areas on the campus. Levels of guideline recommendations as they pertain to significant campus plantings are as follows:

Preserve

Preserve implies the least amount of visual and physical change. The landscape is fitting in character and should be protected and maintained. Its condition must be ensured with informed maintenance.

Revitalize

Revitalization preserves character and defining features but allows changes that would improve the utility or function of a landscape. This is the most flexible treatment, allowing modifications for contemporary use and restoration of important features where critical.

Key Open Spaces and Landscape Goals

Academic Core at Monmouth Avenue

The academic core at Monmouth Avenue (“Core”) is defined as the area along Monmouth Avenue between Church Street and Jackson Street. A key open space exists in front of Smith Music Hall. The landscape goal in the Core is preservation.

- Maintain treed lawn areas and improve lawn drainage
- Preserve historic trees
- To improve views, selectively thin understory vegetation between Humanities and Natural Sciences

The Grove

The Grove is bordered by Parking Lot H, New PE, the residence hall pods, and Church Street. The landscape goal at the Grove is revitalization.

- Maintain reduced lawn areas and improve lawn drainage
- Selectively remove plantings to improve tree health and sight lines to lawn and building facades
- Selectively prune to create high-branching canopy trees
- Carefully locate potential future buildings to harmonize with existing trees
Development Guidelines

Humanities Quad

The Humanities Quad is west of the Humanities and Social Sciences building and extends north to the kiln and south to Old PE. The landscape goal at the Humanities Quad is revitalization.

- Selectively remove over crowded trees to improve tree health, penetration of sun light, and sight lines to building facades
- Remove lawn under dark canopies and replace with coarse mulch and native understory plants such as ferns, Oregon grape, and herbaceous flowers

General Planting

Future planting should continue to cultivate the grand campus scale of the historic trees. The mature trees have grown to be part of the University’s identity and as such new plantings need to consider the next generations. Street tree plantings should extend the existing species to reinforce the frame work. The opportunity to continue to make the campus into an arboretum will add interest and take little effort. When new projects are developed, trees should be selected for their diversity and that are at their best in fall, winter, and spring.

Plantings should be hardy, long lived and focused on significant public areas. Trees should be spaced appropriately, as many campus open spaces have trees that are too close and need to be thinned. The Oregon climate is a defining issue related to tree planting and selection. Too much shade is not desirable at seating and gathering areas. In the fall, winter, and spring sun is a precious commodity and trees should be located appropriately. A variety of sunny and shady conditions are desirable.

When used as architectural elements, plant materials emphasize building facades and pedestrian entries. As a means of defining space, large coniferous evergreen trees are often located at edges of the building front yards and open spaces, while smaller human-scale trees accentuate the building entries. Uniform, low-growing shrub or ground cover provides a visual contrast to the light-toned paving and brick buildings.

Campus Lighting

In addition to the recommendations put forth in the 2000 Master Plan, campus lighting standards need to balance continuity with environmental impacts. The globe style pedestrian light on campus should be maintained for all walks and historic spaces. New plazas and forecourts should explore the use of full cut-off, high-efficiency fixtures. Due to their inefficient nature and glare potential, the use of bollard lighting should only be used as a way of identifying entries and drop-offs and not as a means of illuminating walks or larger spaces. Parking lot
fixtures should be full cut-off fixtures (i.e., fixtures that do not project light into the sky, producing a more focused light source) and their height should consider light pollution onto adjacent spaces. An efficient and standard height for parking lots is 20-feet. The current tall fixtures are visible from great distance and should be replaced with adjacent projects. Uplighting at architecture, signage, art, and landscaping should be used judiciously and implemented in a manner that does not cause glare for adjacent pedestrian spaces. With the continued development on campus, opportunities to provide better lighting controls should be explored.

Campus Furnishings

Standard campus furnishings will help to integrate the campus environment at a pedestrian scale. Presently, black metal railings, awnings, signage, and lamp poles set a strong and cohesive pattern on campus. This character should be extended and further developed with new projects. Currently the campus has over 10 different styles of bench and trash receptacle. It is recommended that the following campus furnishings be reviewed and adopted as campus standards:

- **Benzches**: black metal neo-traditional bench on a concrete paving pad.
- **Trash Receptacles**: black metal, ribbon or rod style with removable liner.
- **Site Handrails**: Black metal round tube.
- **Bicycle Racks**: galvanized metal rack on a concrete paving pad
Infrastructure

Current and Projected Status of Infrastructure

Water

Analysis of existing infrastructure on campus found that the majority of the existing systems are adequate for current campus requirements. The size and coverage of the water mains meet the City of Monmouth’s Water Master Plan and the capacity should be adequate for future building fire flow needs. Future water improvements should only consist of interior loops and fire hydrants as needed to access future buildings on a project by project basis.

Sanitary Sewer

The 12-inch sanitary sewer mainline serving the center of campus, crossing Monmouth Avenue, is at capacity according to the City of Monmouth’s Sewer Master Plan. This pipe serves the area south and east of Stadium Drive and west of the Easterly Bypass. According to the Sewer Master Plan, any additional sanitary load, including any new buildings that would discharge into the main, will require an upsizing of this pipe. It should be noted that the University has grandfathered “credits” for taking the Campus Estates offline when it was demolished. It should also be noted that the Sewer Master Plan made assumptions on the existing flow into this pipe. It may be cost-effective to contract to have flow tests and a study on the mainline to confirm the flows stated in the Sewer Master Plan. It may be that the actual flows are significantly lower than the master plan assumed, or the study may only confirm that the pipe is at capacity.

Stormwater System

The campus is generally served by a conventional underground storm drain system. This system includes large public lines that intersect the campus, and is the only existing infrastructure with an identified capacity shortfall. The 36-inch mainline between Heritage Hall and Stadium Drive has been deemed over capacity. This line collects storm runoff from residential areas southwest of campus, as well as a large part of the western side of campus. Existing capacity of storm drain pipes for the rest of the campus is adequate for the growth this Master Plan Update.

Presently, the storm drain capacity shortfall is not causing a major flooding problem on campus property. The pipe backs up, but does not seriously overflow onto parking areas, streets, or building drains on campus. However, there are streets south and southwest of campus that do flood during heavy rainfall.

Estimating the Increment of Growth

The priority projects in this Master Plan Update are primarily improvements to
serve existing campus programs and enrollment with only modest growth. The increased increment of growth in utility impact is not commensurate with the building areas proposed, given that much of the development is replacement of programs that are leaving the campus or replacement of facilities at the end of their useful life. Therefore, the increased impact on utilities would be primarily due to the increase in residential uses, rather than program uses.

Estimating impacts on sewer use or water consumption based on the increase in the residential capacity is the best fit for estimating impacts. Even this approach may tend to overstate the impacts, given that the dining hall usage tied to the proposed new residence hall would be offset by the decline in dining hall usage from the departing OPA students and staff. It is recommended that the University and the City negotiate an equitable strategy to determine how impacts of this Update be projected.

Potential Solutions for Identified Capacity Shortfalls

Sanitary Sewer

Assuming that the projects under this Update would represent some net increase in impact on the sanitary sewer system, it is proposed that an alternatives analysis be conducted prior to investing in an enlarged mainline. This analysis should look at both expansion of conventional systems and at water conservation systems or operational strategies that might reduce the impact on the sewer system enough to create sufficient capacity. See the sidebar for examples.

A third alternative worth study is to redirect sewage flow from the Spruce, Noble and Cedar Halls, and Sequoia Commons to the new 10-inch sewer main along the north property line of campus. This would be a relatively inexpensive way to decrease flow into the full sewer main. The cost of upsizing the 12-inch sanitary sewer that is assumed to be at capacity to a 15-inch pipe would be about $450,000. The pipe is 2,720 lineal feet, with 1,300 lineal feet within residential back yards. The best way to replace it would be to burst the pipe because it is a less intrusive method. Any building expansion west of Stadium Drive would best be served by the 10-inch mainline at the north side of campus.

Stormwater

As discussed above, capacity issues for the stormwater system are tied to off-campus catchment areas in the area southwest of campus. The City of Monmouth has already completed some preliminary design for a project and would like to move forward with its completion. It is not known for sure if this project will relieve the identified flooding. A drainage study would be able to make this assessment and is recommended as part of an alternatives analysis.

This analysis should look at a swale type system, a conventional pipe drain,
Revised Development Guidelines

Benefits of a swale would include storm flow detention, pre-treatment of water, and improved habitat. The potential beneficial impact of this strategy on Ash Creek should be considered. Typically, this type of swale reduces the risk to downstream water bodies from erosion and flooding during storm events. Secondary benefits of a well-managed swale would be aesthetics and the potential for educational programs to use the facility as a “living laboratory” with monitoring and management tied to academic programs.

The location proposed for the new swale or pipe is west of, and parallel to, the 12-inch water main which is west of the main baseball field (see Chapter 4: Master Plan Update). A preferable location, if surface grades allow, may be against the west boundary of the campus. A swale located on the far western edge of campus and accompanied by a hedgerow planting pattern would have the added benefit of creating a clear edge to the campus, providing a graceful transition to the agricultural lands further west. It should be noted that City standards include a requirement to have no increase in the rate storm water leaves a project site.

The alternatives analysis described here should, of course, include a thorough review of land use and water regulations to ensure that the swale would not lead to additional regulations that would conflict with campus goals. Oregon regulations appear to indicate that a swale designed as a stormwater management facility would not become subject to wetlands regulation [ORS 196.687 and OAR 141085-0015 (4)].

Given that the flows contributing to the need for this project are not primarily generated on the University campus, a funding solution should be negotiated between the City and the University that is equitable to all parties. Because of the City’s interest in going forward with the project, it may be in the best interest of the University to start the project soon.

Parking lot swale

A swale can provide stormwater retention and pre-treatment before it enters local waterways.

Swales also provide natural habitat, an aesthetic quality to the landscape, and can define edges.

Typical swale dimensions
Other Infrastructure Policies

New Buildings and Existing Infrastructure

New buildings will not be located over utility pipes. In making siting recommendations for this Update, sites which might otherwise have merit have been rejected based in part on the associated costs for major utility relocation. However, WOU’s campus is well developed and some designated sites may have existing utility runs to address. Relocation of those runs will be a necessary component of project-level site design and budgeting.

Street Improvements

For any new construction along Church Street west of Stadium Drive, City policies require a full street improvement along the campus frontage. Under current standards, this includes curbs on both sides, sidewalk, paving, and storm drain for about 1,600-feet of frontage. Alternative street sections that address stormwater flow should be analyzed as part of the study described above and discussed with the City if they prove to have merit.
6. Cost Analysis

Cost Analysis

Cost Estimate Summaries and Phasing
Cost Analysis

Cost estimating at the master plan level is a challenging exercise. Without the knowledge of specific details (i.e., survey, engineering assessment, future material costs, etc.), a master plan cost estimate is calculated as an order of magnitude estimate with percentages for design, construction and engineering, inflation, and a contingency for unforeseen costs. The cost estimates for the six buildings of the Update were developed using typical costs at today’s material and labor prices (January 2006).

The cost estimate summaries for the following projects include the cost figures for building construction, site preparation, and ancillary projects included in the phase (i.e., pathways and landscaping, demolition, infrastructure improvements, etc.). The approximate timeline for funding and construction appears next to the project’s phase line. Detailed line item cost estimates for each project are in the Appendix.

Cost Estimate Summaries and Phasing

Phase 1: OPA Remodel and Addition (2007 - 08)

- Renovation and seismic upgrade of existing OPA building (24,712 SF)
- 20,000 SF addition to OPA
- Construction of an east-west access road, pedestrian walkways, landscaping, two parking lots, and open space
- Demolition of Maaske Hall, Arnold Arms, and seven modular classrooms

Cost Estimate: Phase 1
High estimate: $13,180,600
Low estimate: $9,600,000

Phase 2: HSS Remodel (2006 - 08)

- Seismic upgrade and minor building improvements to HSS (34,948 SF)
- Minor landscaping and walkway improvements

Cost Estimate: Phase 2
High estimate: $7,778,000
Low estimate: $4,174,000

Phase 3: Residence Hall(s) (2009 - 10)

- Construction of three residence halls (70,000 SF total)
- Construction of north-south access road and pedestrian walkways
- Minor improvements to the Grove (e.g., thinning, drainage, etc.)
- Demolition of Arbuthnot Hall

Cost Estimate: Phase 3
High estimate: $23,455,000
Low estimate: $21,471,000
Cost Analysis and Phasing

Phase 4: Recreation Center (2009 - 10)
- Construction of a new 50,000 SF recreation center
- Renovation and seismic upgrade of the Old Physical Education building (38,049 SF)
- Construction of a new surface parking lot (20,000 SF) and pedestrian walkway; landscaping

Cost Estimate: Phase 4
High estimate: $30,110,000
Low estimate: $24,666,000

Phase 5: Performing Arts Center (2011 - 12)
- Construction of a new 15,700 SF Performing Arts Center
- Extending the Warren Street right-of-way to connect to the existing road on campus
- Relocating the antennae farm and part of the existing parking lot

Cost Estimate: Phase 5
High estimate: $7,825,390
Low estimate: $7,040,880

Phase 6: Natural Science Building (2011 - 12)
There are two potential sites for a natural sciences building. Phase 6(a) is located next to the Old Physical Education building. Phase 6(b) is located north of the Hamersley library.

Phase 6(a) includes:
- Construction of a new science lab facility (27,000 SF)
- Relocating the tennis courts and maintenance bone yard
- Construction of a new surface parking lot (18,500 SF), pedestrian walkways, and open space

Cost Estimate: Phase 6(a)
High estimate: $21,862,400
Low estimate: $19,092,300

Phase 6(b) includes:
- Construction of a new natural science building (36,000 SF)
- Construction of pedestrian pathways; landscaping

Cost Estimate: Phase 6(b)
High estimate: $24,704,160
Low estimate: $21,183,240
7. Appendix

Meeting Notes:
November 8, 2005
November 15, 2005
November 29, 2005
Design Summary: December 9, 2005 - January 4, 2006

Detailed Cost Estimates

Elements of a campus sustainability plan

SEED and BETC information

Campus Resource Flows

LEED NC Registered Project Checklist

Sustainable Facilities Standards and Guidelines
To the best of our knowledge, this is an accurate summary of the discussions and decisions that occurred during this meeting. Notification of exceptions to this summary is to be made within seven days of its receipt.

DISCUSSION ITEMS

Projects and Issues to be addressed in Master Plan Update

Team discussed projects and issues that Master Plan update should address

1) Business/Computer Science/Math building—project is promised funding by State as part of DPSST departure agreement
2) Humanities building remodel—project partially funded through FEMA grant
3) New Recreation Center—this is not currently funded, and may need to go lower on this list if funding is not identified.
4) 250 bed Residence Hall—to be funded with F-Bonds that the University will pay back through user fees. Location of this building is undetermined and has greatest potential impact to campus master plan layout.
5) Performing Arts—the perspective of the new president could have a large impact on the development of this facility.
6) New Science Building—funding has not been identified for this project. Update Committee should review this priority.

Issues (in no particular order) were identified:

- Pedestrian Access (especially at Physical Plant) and open space character
- Parking (especially around the Grove)
- Service Access
- Preservation of existing buildings (especially phasing or historic)
- Sustainability—Define WOU position and goals
- Status of Public Service Park
- Infrastructure Issues (address existing capacity and potential for expansion)
- Funding Reality Check

Questions to be addressed:
What is Planning Window?
What is priority for Funding, Location, Size and Phasing for building projects identified?
What are the opportunities and constraints for the projects identified?

2.02 **Update Plan Structure and Character**
OUS has required the update.
The 2000 Master plan was adopted by the City—the update will also need to be adopted. The Update should be a stand-alone document. We should not use the 1995 update as a model.

2000 Master Plan was not well received by many on campus.
Premise: Several facts have changed since the 2000 Master Plan was adopted:
- DPSST is leaving campus
- Todd Hall demolition is opposed by many of WOU community
- It is undetermined whether the existing OPE area should move.
- It is undetermined whether there is financial or political support to relocate the Physical Plant

The Update Character was discussed and determined to be:
- Update will focus on next 6 moves and specific challenges to assumptions that have changed.

2.03 **Key Questions for the Update Committee**
- DPSST & Business/Comp/Math—verify that #1 priority and presumed location is correct
- Identify Campus “Issues” with 2000 Plan
- Define Character and goals of update
- Define “planning window”
- These are our assumptions—what do you think?

2.04 **Campus Tour**
- Tom and Paul lead team through campus and identified key interest areas and buildings including DPSST, OPE, Housing area, University Center, Humanities, Performing Arts, Military Academy

NEXT STEPS:

Action By:

Due Date:

2.05 **Next Meeting**
- November 15, 10:00-12:00 WOU—John and Gregg meet with Update Committee
- November 29, 1:00-5:00 WOU—SERA, WM, Boatwright charrette with Update Committee

END OF MEETING AT: 2:00
ITEMS DISCUSSED:

1.01 INTRODUCTIONS: SERA Architects: Gregg Sanders and John Echlin, Bing Sheldon (principal in charge) Eric Ridenour (planner), consultants from Walker Macy and Boatwright Engineering. WOU Master Plan Update Committee member introduced themselves.

1.02 "IS-IS NOT": GOALS FOR THE UPDATE: SERA asked for Committee participation to determine the goals for the project. A list was compiled generated by Committee ideas for what the project “is” and “is-not”.

“IS”

- Update to 2000 master plan
- (Supposed to cover 2000-2010)
- Reflection on current conditions* and thinking (student numbers v. projections (4700 vs. 6000)
- Chance to reflect on 2004 Strategic Plan
- A case for future funding
- Philosophy switch/tweak from 2000 plan
- Big picture: broad sweep of goals; ideals
- Based on projections
- Document changes in existing building assumptions made in 2000 plan
- Opportunity to evaluate new “products,”
- Opportunity to evaluate open space
- Re-evaluation of building removal
- Removal of “rollovers” from old plans that no longer belong
- Look at DPSST leaving campus
- Reflect nearby funding
- Focus on next 3 biennia
- Reflect changing educational delivery methods (classroom technology)
- Chance to look at sustainable strategies
- Reflect technology advances
- Look at connecting buildings with infrastructure
WORKSHOP
Evaluating program needs in terms of planning facilities
Incorporate assumptions submitted to OUS
Reaffirm character of WOU, campus

“IS NOT”
NEW master plan
A construction schedule
Cast in stone"
Anybody’s office
Detailed building evaluations
Detailed solution
Pie in the sky
Detailed programming study

1.03 ASSUMPTIONS: 2000 Master plan had several assumptions, now we can accept or challenge the assumptions.
ACCEPT:
Major zoning (but blur edges outside academic core)
Program replacement
Core of campus
Pedestrian connection housing/campus
Urban design guidelines
Parking on perimeter

CHALLENGE
Building demolition
Program replacement
Funding solely from OUS
Some specific solutions
Specific department locations
All buildings expendable
Historic building criteria
Sustainable criteria
Performing arts location/parking
Conference center location
Campus projections
Campus plan reflect campus growth
Parking
Residential zone distinction

Example: moving physical plant down to athletic fields. Was connecting academic and residential zones. Move is technically difficult and expensive but has many good sides.
Is this a priority in the next 3 biennia?
Want to create space in core of campus for academic/student interaction

1.04 OUS PRIORITY LIST: Review assumptions included in report sent to OUS recently.
(Bldg priorities numbered)
OUS Assumptions: 2007-09
1. DPSST demolition and renovation ($14 million)
Funding mostly accounted for, must not jeopardize this in our planning
Computer Science and math may not be moving there as assumed
Explore military academy’s in DPSST space
Transition plan to provide temp student dorm space for a few years
2. Remodel and update HSS (FEMA + state match) $3 million

2009-11:
3. 250 beds new residence hall (funded through F bonds, state when we can demonstrate the need) $12 million
4. Recreation Center (priority but funding unclear) G bonds, student fees requirements

HPE discussion – be cautious of modeling after bigger schools with bigger budgets; don’t replicate things we already have.

2011-2013:
5. Performing Arts Center
6. New Classroom building (science)

1.05

2000 PHYSICAL PLAN: SERA reviewed the physical master plan to highlight new construction for proposed in the 2000 Master Plan and note items already completed.
1. Future housing
2. future classroom building
3. future performing arts building
4. Future science building
5. New library (DONE)
6. New Classroom Building
7. Moving physical plant
8. Addition to PE?

Public Service Park – placeholder? Future campus expansion? Future recreation use?
Fates of Arnold Arms (classrooms)/West House
Missing from 2000 master plan – criteria for historic buildings, sustainability

Review of Areas of concern:
Sites to consider/open space use/adjustments to pedestrian system
- Residence hall
- Lot next to library? To keep residential cluster as compact as possible. Have to cross Monmouth Ave (ask city about turning into pedestrian path, but still requires emergency access)
- Next to the Grove, SW or NE
- Existing physical plant space, could justify moving Phys plant, but cost is huge ($50-100 million)
- near public safety/DEP
- Science building (foreseen for where Old PE is)
- North of library
- Clustering classroom area on campus
- Recreation Center
- Attached to New PE/Old PE?

1.06

IDEAS FOR THE UPDATE
- Status of DPSST & Public Service Park
- 6 building priorities
- Pedestrian access development
- (Monmouth Ave)
- Parking (esp. at the Grove)
- Service access
WORKSHOP

Preservation of existing building
Sustainability (energy & resource)
Infrastructure capacity
Funding reality check

1.07 SCHEDULE:
- Next Meeting: November 29, 1-5 p.m., creative brainstorming for plan update.
- Location TBA
- Week of January 16, presentation workshop, idea critiques
- February – draft report, final report from architects
- Contact people: Sanders-design, Tom Neal-WOU

NEXT STEPS:

1.08 Assignment – read “Off the shelf” (Tom Neal to distribute) about what makes an effective master plan (generalizations are better for future flexibility, context changes).

END OF MEETING AT: 12:05 PM
ITEMS DISCUSSED:

2.01 Introductions: SERA introduced the Design Team and asked for introduction for all people present on the Committee, these included: Paul Finke, Stephanie Beery, Jon Carey, Mark Weiss, Peter Courtney, Laurie Burton, Cheryl Gaston, Scot Morse, Tom Neal, Gary Dukes, Leta Edwards, Hamid Bahari-Kashani, Hilda Rosselli, Brian Caster, Michael Phillips, Bob Turner.

2.02 The goals of the meeting were established: To create a clear direction for the Master Plan Update. It was explained that this would involve several levels of consideration by the Committee:

- “Is-is not” and values established at the first workshop
- The Design Team’s analysis and findings based on review of the 2000 Master Plan and other documents provided by WOU
- Review and discussion of three scenarios illustrating exaggerated layout strategies.

2.03 SERA presented Analysis and Findings based on review of the 2000 Master Plan, DPSST Report, Todd Hall Report, PE/Recreation Study, and Academic Hall study and schematic design set. These findings will be published in the appendix of the final report. Two specific questions were asked by the Committee:

- Is math going to move to the remodeled OPA building? Answer: WOU will need to determine exactly what programs will be relocating to the OPA building.
- Can the dining hall accommodate the proposed 250 bed residence hall? Answer: it is assumed that removing the students from DPSST and adding the new residence hall will be a net-zero change. However, it was agreed that the Dining Hall Operations should perform an in-house study to quantify the predicted load.
2.04 Hamid Bahari-Kashani asked about the status of the New Academic Building proposed north of the Library and designed to house Business, Math and Computer Science programs. A programming and schematic design study for the proposed facility was completed in March 2005. Mark Weiss answered the question, stating that since DPSST is vacating nearly 80,000 SF, the state has targeted funding for a remodel/renovation/addition. An amount of $14 million has been identified to renovate or potentially add on to OPA with the intention of housing Business, Math and Computer Science. At the time of the meeting, the final program was unresolved, and further in-house discussion will need to take place. WOU will inform SERA of the final intended program for the renovated DPSST area.

2.05 SERA presented ideas about criteria that could be used to establish a WOU position on sustainability. SERA presented basic ideas about voluntary programs such as LEED and the Natural Step, as well as required programs such as Oregon’s SEED guidelines. SERA also presented several resources available for review by the Committee. It was agreed that SERA should develop a strategy for review and adoption by WOU that established a cost-benefit guideline for design decisions that went beyond Oregon SEED baseline requirements. An example of this strategy could be a limit of X% above a baseline cost for design decisions that could reduce resource use or environmental impact of new development or renovations.

Materials on sustainability that may apply to the WOU campus in particular were brought along by SERA. They included:

- Case Studies from the National Wildlife Federation’s Campus Ecology program (http://www.nwf.org/campusecology; select case studies also compiled in the NWF book Ecodemia)
- Oregon Sustainability Act and Executive Orders on Sustainability (http://www.sustainableoregon.net/sust_act/HB3948.cfm and related links)

2.06 Boatwright discussed infrastructure and utility needs and existing conditions. Through research with the City of Monmouth, it was determined that new development will require upgrading the storm and sanitary sewer systems serving the University. This could be relatively costly and would likely involve off-site improvements through the residential areas to the east. Boatwright also noted that the City would like to install a stormwater swale on the west edge of campus to handle University and community stormwater. This would likely be a shared cost item. It was suggested that “green” design strategies may be a tool to reduce sanitary and storm load in the system, thereby preventing the need for costly upgrades. It was also suggested that a detailed use analysis may be performed to demonstrate no net gain when new systems are brought on line. No firm action was decided upon.

2.07 Walker Macy discussed the potential of the WOU campus to capitalize on open spaces and improve the experiential and functional qualities of the pedestrian circulation system. Walker Macy urged the Committee to view any space on campus that did not have a building as a potential place-making open space.

2.08 All these ideas were introduced as a framework for discussion of the three layout scenarios developed by SERA. All three were described as exaggerations, and not proposed as solutions. Instead, they were to be considered as a springboard for
discussion that would bring out common themes for the 2005 Update. The three scenarios were presented as:

- “Main Street”—focusing all new development around a pedestrian corridor formed by closing Monmouth.
- “Village Green”—establishing the Grove as the center of campus, with development and circulation focused on this area.
- “Satellite”—recognizing the de-facto center of campus as the intersection of Church and Monmouth, and establishing circulation and building development around zones that radiate from that intersection.
- It was noted that a fourth scheme that challenged the notion of the campus core and promoted development to the west was considered but rejected by the team prior to this workshop. It was considered important to evaluate whether a decentralized campus could have advantages over a centralized plan. It was determined by the Design Team that there were no clear advantages presented in a decentralized scheme.

2.09 Three small breakout groups were established and rotated through each scheme. Each scheme was evaluated using the following criteria:

- Pedestrian Circulation
- Vehicular Circulation & Parking
- Open Space & Landscape
- Infrastructure/Utilities, Service access
- Preservation of existing buildings
- Sustainability (energy & resource)
- Ease of Implementation

2.10 The discussion points of the breakout scheme were summarized by each scheme facilitator.

2.11 SERA grouped these discussion points into a summary that the design team will use as a guideline as it creates an update plan and report. The summary points were noted as:

- Residence Hall at site north of Grove is considered a good alternative
- PE/Rec location near the south area of campus should be explored and emphasized. Things to consider include: Impact on parking by locating near Old PE, possible location on Church Street, potential impact to New PE, potential impact to relocation of tennis courts, creating a building that links the indoors with outdoors.
- South campus needs to establish and develop an entry sequence. Focus should be given to the image of WOU as seen traveling up and down Monmouth as well as the “everyday” image of that follows students, staff/faculty and visitors for major events.
- Define program for Performing Arts.
- Consider pedestrian access to center of campus from perimeter parking areas. Focus should be given to the pedestrian route along Church Street. The potential to close Church Street as a pedestrian mall should be considered.
- Strengthen the diagonal that is present from northwest to south east campus.
- The debate on closing Monmouth should be explored and resolved. Consensus support for closing Monmouth was not found, with several people noting that traveling up and down Monmouth in a car helped promote WOU’s image in the community.
- Explore the alternate route to the east regardless of closing Monmouth
- Placing the Performing Arts building to align with Church was considered desirable. Doing so may also provide an opportunity for a pedestrian-only pathway connecting the Performing Arts area to Monmouth-Church intersection.
- Consider creating a Live/Learn academic hall instead of a single use residential hall before establishing location.
- Removal of Maaske to create an open space was considered very desirable.
- Consider the rhythm of open and built space along Monmouth when placing buildings.

NEXT STEPS:

2.12 SERA to send WOU a diagram with all potential locations for the residence hall located. WOU to instruct SERA of Committee preference.
2.13 SERA to establish criteria for campus sustainability strategies. WOU to review.
2.14 SERA to establish criteria for building preservation. WOU to review.
2.15 SERA to create draft schemes and draft report section, working with Tom Neal and Paul Finke as representatives for the Committee.
2.16 SERA to present draft plan and report at the next workshop, TBA tentatively scheduled for the week of January 30, 2006.

END OF MEETING AT: 5:00 PM
ITEMS DISCUSSED:

2.01 The design team met four times from December 09, 2005 through January 04, 2006. These meetings were informal design sessions. The meetings were iterative and fluid. There was no formal structure or agenda. The goal of the meetings was to define a single direction for the master plan update based on:

- Findings from the Committee workshop sessions
- Existing and proposed infrastructure requirements
- Existing and proposed pedestrian circulation needs
- Existing and proposed service access needs
- Existing and proposed vehicular circulation and parking needs
- Existing and proposed open space needs
- Campus scale characteristics
- Funding realities

2.02 The 2000 Master Plan focused on development of buildings in prescriptive way. It was agreed that the update should soften some of the prescriptive requirements to allow greater flexibility.

2.03 The Design Team created options for the residential hall(s) and new Athletic/Recreation addition. The proposed solutions were given to Tom Neal for discussion with core group interests. It was determined that the best location for the Athletic/Rec addition was adjacent to the Old PE. Priority was given to the Lot H site for the residential area, provided that the centralized parking for night-time workers at Valsetz and Werner were accommodated.
In addition to providing central parking, Lot H also provides a natural connection between Valsetz and Werner. The “desire line” pedestrian path is a diagonal that crosses the parking area. It was determined that the master plan update should include a major pedestrian access route following this diagonal.

The design team analyzed the existing underground utility runs. It was found that a major utility corridor exists near Parking Lot H.

Several strategies were pursued to place one or a group of residential buildings on the site of Lot H. Although it was found to be possible to fit the residence hall on the Lot H site, conflicts with underground utilities, service access, site lines between Valsetz and Werner, and campus scale were persistent.

Service access to Werner and the Physical Plant also dominated the design strategies. In order to maximize opportunity to create pedestrian connections between Valsetz and Werner, the initial goal was to separate the access to the Physical Plant and Werner with local access only truck loading. Although technically feasible, solutions were complex and overly prescriptive.

During the final design session it was determined that the Lot H site would be best served as a green space, rather than a building site. By removing the parking lot, the pedestrian access could be maintained without the conflict of the vehicular traffic.

The goal of local access only truck loading was abandoned in favor of a limited use vehicular street from Monmouth to Church. Truck loading could occur from this street and night time permit-only parallel parking could provide the service parking for Werner and Valsetz. The street should be designed as a narrow street with sidewalks on both sides, parking on one side, and trees and other street amenities.

The central location for the residential halls was still considered ideal, so the residence halls were proposed at the edge of the grove. To avoid utility conflicts, the residence halls were proposed within the grove, near the edges. Careful building placement could preserve the majority of trees and placement of the buildings on the edges satisfied the goal of reinforcing and activating the grove.

Placement of the Athletic/Rec center addition west of Old PE created a strong desire line from Werner to the south end of campus. The Athletic/Rec center addition was proposed within the boundaries of Lot F. It was determined that the desire line created by this created the potential for another important open space around Maple Hall.

The Natural Science building could be located adjacent to this open space by building it within part of Lot F. This could allow good adjacency to the existing Natural Science building. However, it would require moving the tennis courts and relocating additional parking. Some of the parking could be placed on the site of Arnold Arms. Some could also be placed at the southwest end of the practice fields.

Alternatively, the Natural Science Building could be located north of Hamersly Library. This would require the proposed building to be a classroom/lab building which may be larger and more expensive than a Lab-only building.

These design moves resulted in a different view of the plan. An “area of opportunity” was identified from Lot H south to Jackson Street, from Monmouth to Lot F. The design team recommended creating open spaces on the site of Lot H and within the area from the Cottage to the old grove to organize campus buildings.

The design team presented the ideas to Tom and Paul, with general agreement from both after discussion. There was concern that some of the design ideas were different from the general schemes discussed during the November 29 committee workshop. The design team was encouraged to present evolution of the plan schemes during the January 19 draft report presentation.

Budget analysis was discussed in conjunction with the design discussion. In addition to identifiable building projects, the master plan update should include budget costs for site improvements around the building projects, including parking, pedestrian circulation, and
green space creation. It was determined that we should identify the scope of site improvements to be associated with each project:

- **Business/CS/Math (2007-9)**
 Size: 20,000 SF new building, 24,712 SF remodeled existing building (budget $14m, including renovation and seismic upgrade to existing OPA)

- **HSS (2006-9)**
 Size: 34,948 SF (budget $2.7m, including voluntary seismic upgrade with exterior cast-in-place concrete shear walls)
 Site improvements: new quad entry, selective thinning of “old grove”, improvements to existing pedestrian access

- **New Residential (2009-11)**
 Size: 70,000 SF total (3 buildings at 22,333 SF each)
 Site improvements: Grove improvements, N-S leg of new access road

- **Athletic Recreation Addition (2009-11)**
 Size: 50,000 SF new, 38,049 SF existing building (budget to include renovation and seismic upgrade of existing Old PE)
 Site Improvements: New pedestrian access and development of new quad, parking relocation for displaced Lot F parking, Jackson Street pedestrian crossing.

- **Performing Arts (2011-13)**
 Size: 15,700 SF
 Site Improvements: Connection road, pedestrian access south of Education, antennae farm relocation

- **Natural Science Option A-Lab only (2011-13)**
 Size: 27,000 SF (programming TBD)
 Site Improvements: Tennis Relocation, Bone yard relocation, new quad improvements, parking relocation for displaced Lot F parking

- **Natural Science Option B-Classroom/lab (2011-13)**
 Size: 36,000 SF (programming TBD)
 Site Improvements: Building site north of Hamersley Library.

NEXT STEPS:

2.17 SERA to present draft plan and report at the next workshop, scheduled for January 19, 2006.
OPA Remodel and Addition (2007-2009)

<table>
<thead>
<tr>
<th>Description</th>
<th>Sq Ft</th>
<th>Low</th>
<th>High</th>
<th>Cost Low</th>
<th>Cost High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demo Arnold Arms</td>
<td>7600 sf</td>
<td>$ 10.00</td>
<td>$ 12.00</td>
<td>$ 76,000.00</td>
<td>$ 91,200.00</td>
</tr>
<tr>
<td>Demo seven (7) modular classrooms</td>
<td>7000 sf</td>
<td>$ 4.00</td>
<td>$ 6.00</td>
<td>$ 28,000.00</td>
<td>$ 42,000.00</td>
</tr>
<tr>
<td>Demo Parking lot H</td>
<td>64400 sf</td>
<td>$ 0.85</td>
<td>$ 1.50</td>
<td>$ 54,740.00</td>
<td>$ 96,600.00</td>
</tr>
<tr>
<td>Demo Maaske Hall</td>
<td>22000 sf</td>
<td>$ 10.00</td>
<td>$ 12.00</td>
<td>$ 220,000.00</td>
<td>$ 264,000.00</td>
</tr>
<tr>
<td>20,000 sf Building</td>
<td>20000 sf</td>
<td>$ 190.00</td>
<td>$ 215.00</td>
<td>$ 3,800,000.00</td>
<td>$ 4,300,000.00</td>
</tr>
<tr>
<td>24,712 sf renovation & seismic</td>
<td>24712 sf</td>
<td>$ 80.00</td>
<td>$ 150.00</td>
<td>$ 1,976,960.00</td>
<td>$ 3,706,800.00</td>
</tr>
<tr>
<td>Diagonal walk</td>
<td>4900 sf</td>
<td>$ 4.00</td>
<td>$ 4.50</td>
<td>$ 19,600.00</td>
<td>$ 22,050.00</td>
</tr>
<tr>
<td>Green Space @ lot H</td>
<td>26000 sf</td>
<td>$ 4.50</td>
<td>$ 5.00</td>
<td>$ 117,000.00</td>
<td>$ 130,000.00</td>
</tr>
<tr>
<td>E-W leg of roadway</td>
<td>5600 sf</td>
<td>$ 3.25</td>
<td>$ 3.75</td>
<td>$ 18,200.00</td>
<td>$ 21,000.00</td>
</tr>
<tr>
<td>New Access road sf</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Enclose PP Parking</td>
<td>600 lf</td>
<td>$ 25.00</td>
<td>$ 28.00</td>
<td>$ 15,000.00</td>
<td>$ 16,800.00</td>
</tr>
<tr>
<td>New Parking</td>
<td>10000 sf</td>
<td>$ 4.00</td>
<td>$ 5.00</td>
<td>$ 40,000.00</td>
<td>$ 50,000.00</td>
</tr>
</tbody>
</table>

$ 6,636,500.00 - $ 8,740,450.00

Escalation @ 8% year to Mid pt. 1.16 $ 7,383,980.00 - $ 10,138,922.00
Soft costs @ 30% $ 9,599,174.00 - $ 13,180,598.60
Land cost 0% $ 9,599,174.00 - $ 13,180,598.60

Total project cost $ 9,599,174.00 - $ 13,180,598.60
<table>
<thead>
<tr>
<th>Description</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSS seismic upgrade 34,948 sf</td>
<td>$80.00</td>
<td>$150.00</td>
</tr>
<tr>
<td></td>
<td>$2,795,840.00</td>
<td>$5,242,200.00</td>
</tr>
<tr>
<td>New entry at Quad 7000 sf</td>
<td>$8.00</td>
<td>$10.00</td>
</tr>
<tr>
<td></td>
<td>$56,000.00</td>
<td>$70,000.00</td>
</tr>
<tr>
<td>Thinning of old grove trees. 30000 sf</td>
<td>$0.50</td>
<td>$1.00</td>
</tr>
<tr>
<td></td>
<td>$15,000.00</td>
<td>$30,000.00</td>
</tr>
<tr>
<td></td>
<td>$2,866,840.00</td>
<td>$5,342,200.00</td>
</tr>
<tr>
<td>Escalation @ 8% year to Mid pt. 1.12</td>
<td>$3,210,860.80</td>
<td>$5,983,264.00</td>
</tr>
<tr>
<td>Soft costs @ 30%</td>
<td>$4,174,119.04</td>
<td>$7,778,243.20</td>
</tr>
<tr>
<td>Land cost 0%</td>
<td>$4,174,119.04</td>
<td>$7,778,243.20</td>
</tr>
<tr>
<td>Total project cost</td>
<td>$4,174,119.04</td>
<td>$7,778,243.20</td>
</tr>
<tr>
<td>Description</td>
<td>Sq Ft</td>
<td>Low</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>3 buildings totaling 70,000 sf</td>
<td>70000 sf</td>
<td>$175.00</td>
</tr>
<tr>
<td>Grove improvements</td>
<td>1 lspm</td>
<td>$50,000.00</td>
</tr>
<tr>
<td>North/South leg of new access road</td>
<td>10000 sf</td>
<td>$4.25</td>
</tr>
<tr>
<td>Demo Arbuthnot Hall</td>
<td>33950 sf</td>
<td>$5.00</td>
</tr>
<tr>
<td>Escalation @ 8% year to Mid pt.</td>
<td>1.32</td>
<td>$16,516,170.00</td>
</tr>
<tr>
<td>Soft costs @ 30%</td>
<td></td>
<td>$21,471,021.00</td>
</tr>
<tr>
<td>Land cost 0%</td>
<td></td>
<td>$21,471,021.00</td>
</tr>
<tr>
<td>Total project cost</td>
<td></td>
<td>$21,471,021.00</td>
</tr>
<tr>
<td>Description</td>
<td>Sq Ft</td>
<td>Low</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>50,000 sf new addition</td>
<td>50000sf</td>
<td>$225.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$11,250,000.00</td>
</tr>
<tr>
<td>38,049 sf renovation and seismic upgrade of existing facility.</td>
<td>38050sf</td>
<td>$80.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$3,044,000.00</td>
</tr>
<tr>
<td>Relocation "F" lot parking</td>
<td>20000sf</td>
<td>$4.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$80,000.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$14,374,000.00</td>
</tr>
<tr>
<td>Escalation @ 8% year to Mid pt.</td>
<td>1.32</td>
<td>$18,973,680.00</td>
</tr>
<tr>
<td>Soft costs @ 30%</td>
<td></td>
<td>$24,665,784.00</td>
</tr>
<tr>
<td>Land cost 0%</td>
<td></td>
<td>$24,665,784.00</td>
</tr>
<tr>
<td>Total project cost</td>
<td></td>
<td>$24,665,784.00</td>
</tr>
<tr>
<td>Description</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>15,700 sf building</td>
<td>$225.00</td>
<td>$250.00</td>
</tr>
<tr>
<td>Total Low</td>
<td>$3,925,000.00</td>
<td>$3,532,500.00</td>
</tr>
<tr>
<td>New Connection Road</td>
<td>$4.25</td>
<td>$4.75</td>
</tr>
<tr>
<td>Total High</td>
<td>$95,000.00</td>
<td>$85,000.00</td>
</tr>
<tr>
<td>New pedestrian access South of Education</td>
<td>$4.00</td>
<td>$4.50</td>
</tr>
<tr>
<td>Total Low</td>
<td>$47,250.00</td>
<td>$42,000.00</td>
</tr>
<tr>
<td>Antennae Farm Relocation</td>
<td>$40,000.00</td>
<td>$50,000.00</td>
</tr>
<tr>
<td>Total High</td>
<td>$50,000.00</td>
<td>$40,000.00</td>
</tr>
<tr>
<td>Escalation @ 8% year to Mid pt.</td>
<td>1.48</td>
<td></td>
</tr>
<tr>
<td>Total Low</td>
<td>$6,019,530.00</td>
<td>$5,416,060.00</td>
</tr>
<tr>
<td>Soft costs @ 30%</td>
<td></td>
<td>$7,825,389.00</td>
</tr>
<tr>
<td>Total High</td>
<td></td>
<td>$7,825,389.00</td>
</tr>
<tr>
<td>Land cost 0%</td>
<td></td>
<td>$7,825,389.00</td>
</tr>
<tr>
<td>Total Low</td>
<td>$7,825,389.00</td>
<td>$7,040,878.00</td>
</tr>
<tr>
<td>Total High</td>
<td></td>
<td>$7,825,389.00</td>
</tr>
<tr>
<td>Total project cost</td>
<td>$7,040,878.00</td>
<td>$7,040,878.00</td>
</tr>
</tbody>
</table>
Natural Science Building (2011-2012)

Option A

<table>
<thead>
<tr>
<th></th>
<th>Sq Ft</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab only 27,000 sf</td>
<td>27000 sf</td>
<td>$350.00</td>
<td>$400.00</td>
</tr>
<tr>
<td>Site improvements;</td>
<td>7000 sf</td>
<td>$3.50</td>
<td>$4.00</td>
</tr>
<tr>
<td>Tennis relocation</td>
<td>4 each</td>
<td>$40,000.00</td>
<td>$40,000.00</td>
</tr>
<tr>
<td>Bone yard relocation</td>
<td>1 lpsm</td>
<td>$125,000.00</td>
<td>$150,000.00</td>
</tr>
<tr>
<td>Site improvements</td>
<td>1 lpsm</td>
<td>$60,000.00</td>
<td>$80,000.00</td>
</tr>
<tr>
<td>Demo Parking</td>
<td>35000 sf</td>
<td>$0.85</td>
<td>$1.50</td>
</tr>
<tr>
<td>Relocation "F" lot parking</td>
<td>18500 sf</td>
<td>$4.00</td>
<td>$5.00</td>
</tr>
</tbody>
</table>

Total project cost

$9,923,250.00 | $11,363,000.00

Escalation @ 8% year to Mid pt. 1.48

$14,686,410.00 | $16,817,240.00

Soft costs @ 30%

$19,092,333.00 | $21,862,412.00

Land cost 0%

$19,092,333.00 | $21,862,412.00

Total project cost

$19,092,333.00 | $21,862,412.00

Option B

Building location North of Hamersley Library

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>36,000 sf</td>
<td>36000 sf</td>
<td>$300.00</td>
</tr>
<tr>
<td>Site improvements</td>
<td>60000 sf</td>
<td>$3.50</td>
</tr>
</tbody>
</table>

Total project cost

$21,183,240.00 | $24,704,160.00

Escalation @ 8% year to Mid pt. 1.48

$16,294,800.00 | $19,003,200.00

Soft costs @ 30%

$21,183,240.00 | $24,704,160.00

Land cost 0%

$21,183,240.00 | $24,704,160.00

Total project cost

$21,183,240.00 | $24,704,160.00
Elements of a Campus Sustainability Plan

The plan should identify and address key elements of sustainability including, but not limited to:

- Built environment
- Physical environment
- Purchasing and procurement
- Recycling
- Resource management and consumption
- Traffic and transportation

The Campus Sustainability Plan shall include measurable indicators and planning principles for all key areas of the campus. The plan shall include tools to measure the impacts of proposed practices and shall provide critical evaluation methods for further development of such practices. The plan should provide adequate analysis to guide campus decisions surrounding the priority and timing of specific sustainability initiatives.

Types of environmental factors that should be addressed should include:

Site/physical environment:
- Stormwater management
- Habitat potential of the campus and related impacts associated with:
 - Pest management
 - Planting policies: natives, exotics, etc.
 - Light Pollution

Energy:
- Building conservation standards – new construction and retrofit
- Renewable energy potential: on-site sources? green tags?
- Transportation and Access Issues
 - Alternatives to cars
 - Alternative fuels for fleets
 - Bicycle and pedestrian support

Water:
- Potable water use reduction
- On-site water reclamation – greywater, blackwater and rainwater
- Irrigation strategies

Materials:
- Buy local/regional preference
- Recycled content purchasing
- Solid waste recovery: recycling, construction waste management, etc.
State Energy Efficiency Design Program (SEED)

The State Energy Efficiency Design program was originally established in 1991 as a result of Oregon State law [ORS 276.900-915]. This law directed state agencies to work with the Oregon Department of Energy (Energy) to ensure cost-effective energy conservation measures (ECMs) are included in new and renovated public buildings. It was revised in 2001 to require that all state facilities constructed on or after June 30, 2001 exceed the energy conservation provisions of the Oregon State building code by 20 percent or more.

The Department of Energy’s staff provides technical consulting services to state agencies and/or their authorized contractors throughout the course of a project. State agencies reimburse the Energy Department for services rendered. In many cases, Energy Department involvement also enables the implementing agency to save capital costs.

Business Energy Tax Credit Program (BETC)

The Oregon Business Energy Tax Credit program was originally designed as an incentive for private businesses to invest in energy efficient buildings systems. The program has been expanded in two ways that make it attractive for WOU to pursue as the University undertakes increased sustainability efforts. With addition of a ‘pass-through’ option, the credit can be extended to public entities such as WOU, in conjunction with a project partner.

In addition, with the “sustainable buildings” tax credit program, holistic green building efforts can be awarded the credit. Currently, the sustainable building tax credit is tied to the level of LEED Silver. It should be noted that projects are also required to achieve particular credits under LEED, such as energy credits and the commissioning credit.

Source: Oregon Energy Department, egov.oregon.gov
Campus Resource Flows

A very effective means to initiate a campus sustainability planning process is to create a ‘map’ of the resources that flow through a campus. By describing and quantifying the energy, water, food and other resources that flow in - and the waste, recyclables, and other by-products that flow out - the planning team can look for where their actions will have the biggest environmental benefit. Looking at the economics of these flows (e.g., the costs of different forms of waste disposal) one can set priorities that will persuade the financial decisions makers on the campus as well. It is also important to consider the other ‘systems’ that co-exist on campus such as migratory birds and other species that use the campus as habitat.
LEED-NC Version 2.2 Registered Project Checklist

Sustainable Sites

<table>
<thead>
<tr>
<th>Credit</th>
<th>Description</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y Prereq 1</td>
<td>Construction Activity Pollution Prevention</td>
<td>Required</td>
</tr>
<tr>
<td>Credit 1</td>
<td>Site Selection</td>
<td>1</td>
</tr>
<tr>
<td>Credit 2</td>
<td>Development Density & Community Connectivity</td>
<td>1</td>
</tr>
<tr>
<td>Credit 3</td>
<td>Brownfield Redevelopment</td>
<td>1</td>
</tr>
<tr>
<td>Credit 4.1</td>
<td>Alternative Transportation, Public Transportation Access</td>
<td>1</td>
</tr>
<tr>
<td>Credit 4.2</td>
<td>Alternative Transportation, Bicycle Storage & Changing Rooms</td>
<td>1</td>
</tr>
<tr>
<td>Credit 4.3</td>
<td>Alternative Transportation, Low-Emitting and Fuel-Efficient Vehicles</td>
<td>1</td>
</tr>
<tr>
<td>Credit 4.4</td>
<td>Alternative Transportation, Parking Capacity</td>
<td>1</td>
</tr>
<tr>
<td>Credit 5.1</td>
<td>Site Development, Protect of Restore Habitat</td>
<td>1</td>
</tr>
<tr>
<td>Credit 5.2</td>
<td>Site Development, Maximize Open Space</td>
<td>1</td>
</tr>
<tr>
<td>Credit 6.1</td>
<td>Stormwater Design, Quantity Control</td>
<td>1</td>
</tr>
<tr>
<td>Credit 6.2</td>
<td>Stormwater Design, Quality Control</td>
<td>1</td>
</tr>
<tr>
<td>Credit 7.1</td>
<td>Heat Island Effect, Non-Roof</td>
<td>1</td>
</tr>
<tr>
<td>Credit 7.2</td>
<td>Heat Island Effect, Roof</td>
<td>1</td>
</tr>
<tr>
<td>Credit 8</td>
<td>Light Pollution Reduction</td>
<td>1</td>
</tr>
</tbody>
</table>

Water Efficiency

<table>
<thead>
<tr>
<th>Credit</th>
<th>Description</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit 1.1</td>
<td>Water Efficient Landscaping, Reduce by 50%</td>
<td>1</td>
</tr>
<tr>
<td>Credit 1.2</td>
<td>Water Efficient Landscaping, No Potable Use or No Irrigation</td>
<td>1</td>
</tr>
<tr>
<td>Credit 2</td>
<td>Innovative Wastewater Technologies</td>
<td>1</td>
</tr>
<tr>
<td>Credit 3.1</td>
<td>Water Use Reduction, 20% Reduction</td>
<td>1</td>
</tr>
<tr>
<td>Credit 3.2</td>
<td>Water Use Reduction, 30% Reduction</td>
<td>1</td>
</tr>
</tbody>
</table>

Energy & Atmosphere

<table>
<thead>
<tr>
<th>Credit</th>
<th>Description</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y Prereq 1</td>
<td>Fundamental Commissioning of the Building Energy Systems</td>
<td>Required</td>
</tr>
<tr>
<td>Y</td>
<td>Minimum Energy Performance</td>
<td>Required</td>
</tr>
<tr>
<td>Y Prereq 3</td>
<td>Fundamental Refrigerant Management</td>
<td>Required</td>
</tr>
<tr>
<td>Credit 1</td>
<td>Optimize Energy Performance</td>
<td>1 to 10</td>
</tr>
<tr>
<td>Credit 2.1</td>
<td>On-Site Renewable Energy</td>
<td>1 to 3</td>
</tr>
<tr>
<td>Credit 3</td>
<td>Enhanced Commissioning</td>
<td>1</td>
</tr>
<tr>
<td>Credit 4</td>
<td>Enhanced Refrigerant Management</td>
<td>1</td>
</tr>
<tr>
<td>Credit 5</td>
<td>Measurement & Verification</td>
<td>1</td>
</tr>
<tr>
<td>Credit 6</td>
<td>Green Power</td>
<td>1</td>
</tr>
</tbody>
</table>

continued…
Materials & Resources 13 Points

<table>
<thead>
<tr>
<th>Prereq 1</th>
<th>Storage & Collection of Recyclables</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit 1</td>
<td>Building Reuse, Maintain 75% of Existing Walls, Floors & Roof</td>
<td>1</td>
</tr>
<tr>
<td>Credit 2</td>
<td>Building Reuse, Maintain 100% of Existing Walls, Floors & Roof</td>
<td>1</td>
</tr>
<tr>
<td>Credit 3</td>
<td>Building Reuse, Maintain 50% of Interior Non-Structural Elements</td>
<td>1</td>
</tr>
<tr>
<td>Credit 2.1</td>
<td>Construction Waste Management, Divert 50% from Disposal</td>
<td>1</td>
</tr>
<tr>
<td>Credit 2.2</td>
<td>Construction Waste Management, Divert 75% from Disposal</td>
<td>1</td>
</tr>
<tr>
<td>Credit 3.1</td>
<td>Materials Reuse, 5%</td>
<td>1</td>
</tr>
<tr>
<td>Credit 3.2</td>
<td>Materials Reuse, 10%</td>
<td>1</td>
</tr>
<tr>
<td>Credit 4.1</td>
<td>Recycled Content, 10% (post-consumer + ½ pre-consumer)</td>
<td>1</td>
</tr>
<tr>
<td>Credit 4.2</td>
<td>Recycled Content, 20% (post-consumer + ½ pre-consumer)</td>
<td>1</td>
</tr>
<tr>
<td>Credit 5.1</td>
<td>Regional Materials, 10% Extracted, Processed & Manufactured Regionally</td>
<td>1</td>
</tr>
<tr>
<td>Credit 5.2</td>
<td>Regional Materials, 20% Extracted, Processed & Manufactured Regionally</td>
<td>1</td>
</tr>
<tr>
<td>Credit 6</td>
<td>Rapidly Renewable Materials</td>
<td>1</td>
</tr>
<tr>
<td>Credit 7</td>
<td>Certified Wood</td>
<td>1</td>
</tr>
</tbody>
</table>

Indoor Environmental Quality 15 Points

<table>
<thead>
<tr>
<th>Prereq 1</th>
<th>Minimum IAQ Performance</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prereq 2</td>
<td>Environmental Tobacco Smoke (ETS) Control</td>
<td>Required</td>
</tr>
<tr>
<td>Credit 1</td>
<td>Outdoor Air Delivery Monitoring</td>
<td>1</td>
</tr>
<tr>
<td>Credit 2</td>
<td>Increased Ventilation</td>
<td>1</td>
</tr>
<tr>
<td>Credit 3.1</td>
<td>Construction IAQ Management Plan, During Construction</td>
<td>1</td>
</tr>
<tr>
<td>Credit 3.2</td>
<td>Construction IAQ Management Plan, Before Occupancy</td>
<td>1</td>
</tr>
<tr>
<td>Credit 4.1</td>
<td>Low-Emitting Materials, Adhesives & Sealants</td>
<td>1</td>
</tr>
<tr>
<td>Credit 4.2</td>
<td>Low-Emitting Materials, Paints & Coatings</td>
<td>1</td>
</tr>
<tr>
<td>Credit 4.3</td>
<td>Low-Emitting Materials, Carpet Systems</td>
<td>1</td>
</tr>
<tr>
<td>Credit 4.4</td>
<td>Low-Emitting Materials, Composite Wood & Agrifiber Products</td>
<td>1</td>
</tr>
<tr>
<td>Credit 5</td>
<td>Indoor Chemical & Pollutant Source Control</td>
<td>1</td>
</tr>
<tr>
<td>Credit 6.1</td>
<td>Controllability of Systems, Lighting</td>
<td>1</td>
</tr>
<tr>
<td>Credit 6.2</td>
<td>Controllability of Systems, Thermal Comfort</td>
<td>1</td>
</tr>
<tr>
<td>Credit 7.1</td>
<td>Thermal Comfort, Design</td>
<td>1</td>
</tr>
<tr>
<td>Credit 7.2</td>
<td>Thermal Comfort, Verification</td>
<td>1</td>
</tr>
<tr>
<td>Credit 8.1</td>
<td>Daylight & Views, Daylight 75% of Spaces</td>
<td>1</td>
</tr>
<tr>
<td>Credit 8.2</td>
<td>Daylight & Views, Views for 90% of Spaces</td>
<td>1</td>
</tr>
</tbody>
</table>

Innovation & Design Process 5 Points

Credit 1.1	Innovation in Design: Provide Specific Title	1
Credit 1.2	Innovation in Design: Provide Specific Title	1
Credit 1.3	Innovation in Design: Provide Specific Title	1
Credit 1.4	Innovation in Design: Provide Specific Title	1
Credit 2	LEED Accredited Professional	1

Project Totals (pre-certification estimates) 69 Points

- **Certified**: 26-32 points
- **Silver**: 33-38 points
- **Gold**: 39-51 points
- **Platinum**: 52-69 points
DEPARTMENT OF ADMINISTRATIVE SERVICES
POLICY MANUAL
ISSUING DIVISION: FACILITIES DIVISION

NUMBER 125-6-010

APPROVAL: Bill Foster, Acting Administrator
EFFECTIVE DATE November 1, 2004

SUBJECT: Sustainable Facilities Standards and Guidelines

PAGE 1 OF 5

AUTHORITY: Executive Order No. EO-00-07; Executive Order No. EO-03-03; ORS 184.421 through 184.470

PURPOSE: This policy implements the facilities portion of Governor's Executive Order Numbers E0-00-07, as well as EO-03-03 and ORS 184.421 through 184.470. It covers standards for siting, design, construction, operation and maintenance of state buildings and state leased buildings.

APPLICATION: Agencies that own, operate, or lease Buildings as defined under this policy.

DEFINITIONS:

Agencies: Executive Branch departments, boards and commissions, including the Oregon University System.

Base Building Profile: A summary of data about a new building. The profile includes the systems, structure, and finishes that would have been planned without incorporating sustainable features.

Building: A structure with a roof and walls that is constructed for permanent use and is heated or cooled.

Build-to-Suit Lease: A state lease where the developer constructs a new building for the Agency.

Life-cycle Assessment (LCA): Looking at the full life of a product and its impact on the environment. This review would include the following steps: mining the raw material; refining and creating a finished product; hauling to the site; installing in the building; resources used during its life; and its final disposal.

Life-cycle Cost (LCC): Looking at the full life cycle of the product and the cost to have it in the building. This review would include: the first cost of the product; the cost to operate and maintain it; and the cost of disposing of it.

Major Renovation: Replacement of most systems and finishes in a Building.

Self-assessment A careful review of the project by the project design team which assigns points based upon the rating system, without formal submission for certification to the U.S. Green Building Council.

SEED The State Energy Efficiency Design program administered by the Oregon Department of Energy through OAR 330-130-0010 to 0080.

SPiRiT SPiRiT is a program used by the National Guard Bureau that provides guidance for making sustainable design and development planning decisions. http://www.cecer.army.mil/SustDesign/SPiRiT.cfm

Statewide Program A DAS Facilities Division program which collects data, reviews facility budget requests, and sets building and resource conservation standards for all Agencies.

Sustainability Using resources in a way and at a rate that allows people to meet their needs and future generations to also meet theirs. It also means meeting environmental, economic, and community needs.

Sustainability Plan A written document that records the Base Building Profile, the Self-assessment rating form, and the features that were added or subtracted from the base to reach the required point rating, including estimated costs.

POLICY:

- Building decisions must balance economic, environmental and community needs. Agencies should continually improve practices to make them more sustainable. A decision that is valid for one site and one point in time will likely change as products and product knowledge change.

- Sustainability may increase or reduce costs. Agencies should take the time and effort necessary to make sound sustainable building decisions. These decisions should be well documented.

- Agencies should choose building parts that are produced using sustainable technology. They should use reliable technology, avoiding untested systems, materials, and processes.

- Agencies should provide training programs for staff and project team members. Training should explain sustainability principles and provide a framework for decisions. It should explain how to keep project records for later review and analyses.

- Building decisions must consider the full life of materials. The review must include life-cycle assessment (LCA) and life-cycle cost (LCC) factors. The level of analysis should match the size of the project or decision. For energy consuming systems, part of the analysis for new state-owned buildings or major renovations shall include compliance with the Oregon Department of Energy’s SEED program.
At least per biennium, Agencies shall report their efforts to follow this policy. The reports shall go to the Statewide Program on forms or in formats defined by it. As a part of the report, DAS will collect some high level data about the benefits of the policy. This report shall be in conjunction with the biennial sustainability report required by ORS 184.423.

I. STANDARD FOR SITING, DESIGN, AND CONSTRUCTION OF STATE-OWNED BUILDINGS

Construction and operation of buildings use high levels of energy and resources. Care must be taken to create more sustainable state buildings. In starting each new building, the project team shall develop a Sustainability Plan. This plan will start with an assumed base building profile. A report will document features and costs that are added or subtracted from this base. The project team, which should include an accredited LEED professional, shall conduct a Self-assessment. The assessment shall be based on the state-modified version of the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED), Version 2.0 criteria (see Appendix for detailed listing and score sheet). Buildings shall be designed to meet the point equivalent of a LEED Silver rating. The Oregon Military Department shall be considered in compliance with this policy if they follow the SPiRiT rating system developed by National Guard Bureau.

II. STANDARD FOR MAJOR RENOVATIONS OF STATE-OWNED OR BUILD-TO-SUIT LEASED BUILDINGS

Renovating buildings means dealing with some issues that are not part of new construction projects. Measures should create a more sustainable leased or owned building. Ensure that all measures are prudent and can show reasonable paybacks and economic benefit. The project team, which should include an accredited LEED professional, shall develop a Sustainability Plan. A report will document sustainable features and costs that are included in the design. The project team shall conduct a self-assessment based on a state-modified version of the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED), Version 2.0 criteria (see Appendix for detailed listing and score sheet). Buildings shall be designed to meet the point equivalent of a LEED Certified rating. The Oregon Military Department shall be considered in compliance with this policy if they follow the SPiRiT rating system developed by the National Guard Bureau.

III. STANDARD FOR OTHER LEASED BUILDINGS

The buildings the state leases around Oregon have an impact on our resources and communities. When major tenant improvements or other modifications are needed for a leased building, the project team shall develop a Sustainability Plan. A report will document measures and costs that are added or subtracted from the building. Any sustainability measure that has a payback within the lease term shall be incorporated into the project. Leases in multi-tenant buildings or requiring few changes will not require a report.
IV. STANDARD FOR THE OPERATION AND MAINTENANCE OF STATE BUILDINGS AND LANDSCAPES

Sustainable building methods include more than design and the choice of parts; operation and maintenance also plays a critical role. Care must be taken that products and practices used to maintain the building are sustainable. Operating and maintenance practices need to ensure all systems continue to function as designed. Scheduled maintenance and cleaning should support energy efficiency and promote the health and comfort of occupants. Agencies shall develop a maintenance plan that shows how they will include sustainable methods. The plan shall be updated each biennium. The maintenance plan shall include actions to address the following areas:

Site
- Reduce contaminants in storm water by cleaning drains and increasing on-site infiltration.
- Use landscape maintenance methods that protect wildlife.
- Minimize or eliminate negative effects on air, land or water, both on and off-site.
- Support programs that promote carpools and car use reduction.
- Use organic fertilizers and natural techniques for insect control.
- Use landscape waste as natural soil amendments.
- Install light fixtures and limit their use to reduce light pollution.
- Recycle yard waste, which may include composting.

Water Efficiency
- Maintain landscape areas using the least water possible.
- Where possible, add flow reducers to minimize water use.
- Educate building occupants and monitor water consumption.
- Increase the amount of unpolluted water returned to below ground supplies.

Energy & Atmosphere
- Monitor building systems for efficiency. Look at updating systems with more efficient equipment.
- Establish a plan for regular maintenance of building systems.
- Start education programs that encourage staff to turn off energy using devices.
- Add energy saving measures when possible.
- Clean windows regularly to preserve good day lighting.
- Review energy consumption quarterly. Confirm correct operating hours. Check peak usage patterns, fixture performance, and maintenance methods. Develop energy profiles to find peak loads.
- Install point-of-use water heaters where practical. Limit the use of re-circulating water systems to times when occupied.
- Set the hot water temperature as low as possible (110 degrees Fahrenheit). In food service areas use a booster heater.
- At the end of its useful life, replace equipment with ozone reducing chemicals. Replace with the best choice available to minimize harm to the atmosphere.
- Install equipment that uses ozone-friendly fuel sources.
• When feasible, purchase green power from reliable energy providers.

Materials & Resources

• Put central recycling systems in place to promote waste management ease.
• Seek materials, equipment, and furnishings to use in buildings that have: the highest recycled content; contain high levels of rapidly renewable materials; have the most benign ingredients; can be recycled; are durable; and, come from local sources.
• Ensure new materials are essential and seek alternatives to virgin materials.
• Purchase supplies in bulk containers to lessen packaging waste.
• Ask vendors to take back shipping containers, pallets, and other packaging materials.
• Establish a building maintenance program. In the program, develop a way to measure maintenance and commit to basic performance standards.
• Seek ways to use salvaged wood or recycled plastic lumber on carpentry projects.
• Look into reworking current furniture systems instead of buying new. Also, consider reworked furniture rather than new.

Indoor Environmental Quality

• Meet or exceed indoor American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) on air quality standards in buildings. Provide tools to check carbon dioxide levels and confirm fresh air levels.
• Stop bad odors and hazardous chemicals from entering air systems.
• Avoid using materials having high volatile organic compound (VOC) levels.
• Establish environmental and packaging guidelines for cleaning products.
• Select cleaning products that are low in VOC's and moderately acidic or alkaline.
• Inspect ventilation ductwork to be sure no freestanding water, mold, or mildew is present.