
Software Testing

Why Test?

Quote by Bruce Sterling, from: A Software Testing Primer, Nick Jenkins

Not technically true, see Formal Methods

https://www.typemock.com/software-bugs-infographic

https://www.typemock.com/software-bugs-infographic
https://www.typemock.com/software-bugs-infographic

“A bug found at design time costs ten
times less to fix than one in coding and a
hundred times less than one found after
launch”

1:6:10:1000
requirements : design : coding : implementation

(Barry Boehm)

Up to 50% of bug fixes actually introduce
new errors in the code!

• Testing reduces risk

• Testing is not optional and needs to infuse the
development lifecycle

• Test early; Test often

• Testing mindset

Terminology
• QA

• QC

• Testing

• Verification

• Validation

• Black-Box testing

• White-Box testing (glass-box)

• Alpha Testing

• Beta Testing

• Performance testing

• Security testing

• Stress testing

• Recovery testing

• …

• Static Analysis

• Dynamic Analysis

https://www.parasoft.com/

https://scan.coverity.com/o/oss_success_stories
https://developer.apple.com/library/content/documentation/Performance/Conceptual/PerformanceOverview/

PerformanceTools/PerformanceTools.html

https://www.parasoft.com/
https://scan.coverity.com/o/oss_success_stories
https://developer.apple.com/library/content/documentation/Performance/Conceptual/PerformanceOverview/PerformanceTools/PerformanceTools.html

• Re-testing

• Regression Testing

• For a great example, see SQLite:

• http://www.sqlite.org/testing.html)

http://www.sqlite.org/testing.html

• Unit Testing (test case, test harness/suite)

• Integration Testing (stubs, drivers)

• System Testing

Unit Testing

Unit testing verifies the functioning in isolation of software elements that
are separately testable. Depending on the context, these could be the

individual subprograms or a larger component made of highly cohesive
units. Typically, unit testing occurs with access to the code being tested
and with the support of debugging tools. The programmers who wrote

the code typically, but not always, conduct unit testing.

SWEBOKv3

Integration Testing
Integration testing is the process of verifying the interactions among

software components. Classical integration testing strategies, such as
top-down and bottom-up, are often used with hierarchically structured

software.
Modern, systematic integration strategies are typically architecture-

driven, which involves incrementally integrating the software
components or subsystems based on identified functional threads.

Integration testing is often an ongoing activity at each stage of
development during which software engineers abstract away lower-level
perspectives and concentrate on the perspectives of the level at which
they are integrating. For other than small, simple software, incremental
integration testing strategies are usually preferred to putting all of the

components together at once—which is often called “big bang” testing.

System Testing
System testing is concerned with testing the behavior of an entire system.

Effective unit and integration testing will have identified many of the software
defects. System testing is usually considered appropriate for assessing the

non-functional system requirements—such as security, speed, accuracy, and
reliability (see Functional and Non-Functional Requirements in the Software

Requirements KA and Software Quality Requirements in the Software Quality
KA). External interfaces to other applications, utilities, hardware devices, or the

operating environments are also usually evaluated at this level.

• Acceptance Testing (User Acceptance Testing, UAT), ATDD

• Behavior Driven Development

• Usability Testing

• Test Automation

• QA Dashboard (e.g. TFS Dashboard)

https://www.visualstudio.com/en-us/docs/report/sharepoint-dashboards/test-dashboard-agile-cmmi

• Code Coverage

• Traceability

• Fault — cause of a malfunction; wrong or missing code

• Failure — undesired effect observed in the system’s
delivered service; manifestation of a Fault

• Defect

• Error — human mistake that contributed to a fault, or a
difference between actual and expected output

• Bug — tester language

Testing can reveal failures, but it is the faults that
can and must be removed

Faults cannot always be unequivocally identified

Test Planning

Unit Testing
See other slide set

Test Scripting

• Scripted evaluation, or

• Free-form exploration

Test Cases

• Document a test

• Prove a requirement (at least one test case per
requirement)

• Should have at least 2: one positive, one negative

Testing in Agile
1. User Story with acceptance test

2. Write integration test cases

3. JIT modeling, design code

4. Write unit tests

5. Write code to implement features described in the
story that themselves represent requirements

Integration & System Testing

See other slides

