Software Testing

Why Test?

The stuff we call "software" is not like anything that human society is used to thinking about.
Software is something like 2 machine, and something like mathematics, and something like language,
and something like thought, and art, and information.... but software is not in fact any of those other
things. The protean quality of software is one of the great sources of its fascination. It also makes
software very powerful, very subtle, very unpredictable,and very risky.

Some software is bad and buggy. Some is "robust," even "bulletproof." The best software is that
which has been tested by thousands of users under thousands of different conditions, over years. It
is then known as "stable." This does NOT mean that the software is now flawless, free of bugs. It

generally means that there are plenty of bugs in it, but the bugs are well-identified and fairly well
understood.

There is simply no way to assure that software is free of flaws. Though software is mathematical in
nature, it cannot by "proven” like a mathematical theorem; software is more like language, with
inherent ambiguities, with different definitions, different assumptions,different levels of meaning that
can conflict.

Quote by Bruce Sterling, from: A Software Testing Primer, Nick Jenkins

Not technically true, see Formal Methods

The Severity of Bugs:

Are We Doomed?

’$ _ Software defects cost the US economy alone over $60 billion yearly

This is over 6.8 million per hour Which is over $113,333 per minute And $1,888 per second

hitps://www.typemock.com/software-bugs-infographic

https://www.typemock.com/software-bugs-infographic
https://www.typemock.com/software-bugs-infographic

"A bug found at design time costs ten
times less to fix than one in coding and a
hundred times less than one found after
launch”

1:6:10:1000
requirements : design : coding : iImplementation
(Barry Boehm)

Up to 50% of bug fixes actually introduce
new errors in the code!

Testing reduces risk

Testing is not optional and needs to infuse the
development lifecycle

Test early; Test often

Testing mindset

Terminology

QQA

* QC

* Jesting

e \erification

e \alidation

Black-Box testing
White-Box testing (glass-box)
Alpha Testing

Beta Testing

Performance testing
Security testing
Stress testing

Recovery testing

e Static Analysis

* Dynamic Analysis

https://www.parasoft.com/

https://scan.coverity.com/o/0ss_success_stories

https://developer.apple.com/library/content/documentation/Performance/Conceptual/PerformanceOverview/
PerformanceTools/PerformanceTools.html

https://www.parasoft.com/
https://scan.coverity.com/o/oss_success_stories
https://developer.apple.com/library/content/documentation/Performance/Conceptual/PerformanceOverview/PerformanceTools/PerformanceTools.html

* Re-testing

* Regression lesting

* For a great example, see SQLite:

e http://www.sqglite.org/testing.html)

http://www.sqlite.org/testing.html

* Unit Testing (test case, test harness/suite)
* Integration Testing (stubs, drivers)

* System Testing

Unit Testing

Unit testing verifies the functioning in isolation of software elements that

are separately testable. Depending on the context, these could be the

individual subprograms or a larger component made of highly cohesive

units. Typically, unit testing occurs with access to the code being tested

and with the support of debugging tools. The programmers who wrote
the code typically, but not always, conduct unit testing.

SWEBOKvV3

Integration lesting

Integration testing is the process of verifying the interactions among
software components. Classical integration testing strategies, such as
top-down and bottom-up, are often used with hierarchically structured

software.

Modern, systematic integration strategies are typically architecture-
driven, which involves incrementally integrating the software
components or subsystems based on identified functional threads.
Integration testing is often an ongoing activity at each stage of
development during which software engineers abstract away lower-level
perspectives and concentrate on the perspectives of the level at which
they are integrating. For other than small, simple software, incremental
integration testing strategies are usually preferred to putting all of the
components together at once—which is often called “big bang” testing.

System Testing

System testing is concerned with testing the behavior of an entire system.
Effective unit and integration testing will have identified many of the software
defects. System testing is usually considered appropriate for assessing the
non-functional system requirements—such as security, speed, accuracy, and
reliability (see Functional and Non-Functional Requirements in the Software
Requirements KA and Software Quality Requirements in the Software Quality

KA). External interfaces to other applications, utilities, hardware devices, or the
operating environments are also usually evaluated at this level.

Acceptance Testing (User Acceptance Testing, UAT), ATDD
Behavior Driven Development

Usabillity Testing

Test Automation

QA Dashboard (e.g. TES Dashboard)

| love watching developers who take part as observers in usability studies. As a former developer
myself | know the hubris that goes along with designing software. In the throes of creation it is
difficult for you to conceive that someone else, let alone a user (!), could offer better input to the
design process than your highly paid, highly educated self.

Typically developers sit through the performance of the first evaluator and quietly snigger to
themselves, attributingthe issues to ‘finger trouble’ or user ineptitude. After the second evaluator
finds the same problems the comments become less frequent and when the third user stumbles in
the same position they go quiet.

By the fourth user they’ve got a very worried look on their faces and during the fifth pass they’re
scratching at the glass trying to get into to talk to the user to “find out how to fix the problem”.

https://www.visualstudio.com/en-us/docs/report/sharepoint-dashboards/test-dashboard-agile-cmmi

* Code Coverage

* [raceability

Fault — cause of a malfunction; wrong or missing code

Failure — undesired effect observed in the system'’s
delivered service:; manifestation of a Fault

Defect

Error — human mistake that contributed to a fault, or a
difference between actual and expected output

Bug — tester language

Testing can reveal failures, but it is the faults that
can and must be removed

Faults cannot always be unequivocally identified

lest Planning

So how do you plan your testing?

At the start of testing there will be a (relatively) large number of issues and these can be
uncovered with little effort. As testing progress more andmore effort is required to uncover
subsequent issues.

The law of diminishing returns applies and at some point
the investment to uncover that last 1% of issues is
outweighed by the high cost of finding them. The cost of
letting the customer or client find them will actually be
less than the cost of finding them in testing.

Defects

The purpose of test planning therefore is to put together
a plan which will deliver the right tests, in the right order,
to discover as many of the issues with the software as

time and budget allow. .
Time

Figure 6: Typical defect discovery rate

Unit Testing

See other slide set

Test Scripting

e Scripted evaluation, or

* Free-form exploration

Test Cases

e Document a test

* Prove a requirement (at least one test case per
requirement)

* Should have at least 2: one positive, one negative

Elements of a Test Case

The following table list the suggested items a test case should include:

ITEM DESCRIPTION

Title A unique and descriptive title for the test case
Priority The relative importance of the test case (critical, nice-to-have,etc.)
Status For live systems, an indicator of the state of the test case.

Typical states could include :

Design — test case is still being designed

Ready — test case is complete, readyto run

Running — test case is being executed

Pass — test case passed successfully

Failed — test case failed

Error — test case is in error and needs to be rewritten

Initial configuration The state of the program before the actions in the “steps” are to be followed.
All too often this is omitted and the reader must guess or intuit the correct
pre-requisites for conducting the test case.

Software Configuration The software configuration for which this test is valid. It could include the

version and release of software-under-testas well as any relevant hardware
or software platform details (e.g. WinXP vs Win95)

Steps An ordered series of steps to conduct during the test case, these mustbe
detailed and specific. How detailed depends on the level of scripting required
and the experience of the tester involved.

Expected behaviour What was expected of the software, upon completion of the steps? What is
expected of the software. Allows the test case to be validated with out
recourse to the tester who wrote it.

1.

2.

3.

lesting In Agile

User Story with acceptance test
Write integration test cases

JIT modeling, design code

. Write unit tests

. Write code to implement features described in the

story that themselves represent requirements

[

Add a test

]‘
P
[Pass] Run the tests]

[Fail]

Make a little
change

l [Pass,

L

1

] development
P2l } gun the tests conine)
l [Pass,
~ development stops
O p ps]

Figure 15.8 The steps of test-first development (TFD)

1
Add an
acceptance test |

!

[Pass] Run the l
acceptance tests
J
. Add a developer |<—
[Fail] >[tas j
Y [Developer L lgelR
[Fall]

Make a litle | TDD]
change J

Make a little
change

|
|
|
|
|
|
|
|
|
|
| | tPass] r Run the developej
|
|
|
|
|
|
|
|
|

[Pass,
functionality
[Fail] rFIun the developer complete]
L tests
Y
[Pass, (Fail] ([Pass,
development Run the functionality
continues] acceptance tests | complete]
"
[Pass,
development stops] l
@ I
Acceptance TDD | Developer TDD

Figure 15.9 Acceptance and developer TDD together

Integration & System Testing

See other slides

