
Integration & System
Testing

SystemUnit Integration Installation

Individual
function/module

correctness

Business
requirements
correctness

User Acceptance

Dependencies0 Extensive

Integration Testing
“Integration testing is the process of verifying the interactions
among software components. Classical integration testing
strategies, such as top-down and bottom-up, are often used with
hierarchically structured software.
Modern, systematic integration strategies are typically architecture-
driven, which involves incrementally integrating the software
components or subsystems based on identified functional threads.
Integration testing is often an ongoing activity at each stage of
development during which software engineers abstract away lower-
level perspectives and concentrate on the perspectives of the level
at which they are integrating. For other than small, simple software,
incremental integration testing strategies are usually preferred to
putting all of the components together at once—which is often
called “big bang” testing.” SWEBOK 2.1.2

Extend Unit Testing Model
• Script tests, write test cases, test harnesses/drivers

• Use tools to manage, run regressions

• Does not necessarily test through the UI

• Individual modules have good unit test coverage

• Write tests to test their integration

• Dependencies are usually unavoidable

• Bottom-up is easiest to think about

Example for .NET:
SpecFlow+

• specflow.org

• Supports Agile, TDD, ATDD, BDD

• Supports Regression Tests

• Automated UI testing (integration with Selenium)

http://specflow.org/

Acceptance / Qualification
Testing

“determines whether a system satisfies its acceptance criteria,
usually by checking desired system behaviors against the
customer’s requirements. The customer or a customer’s
representative thus specifies or directly undertakes activities to
check that their requirements have been met, or in the case of a
consumer product, that the organization has satisfied the stated
requirements for the target market. This testing activity may or may
not involve the developers of the system.” SWEBOK 2.2.1

Acceptance Test/Criteria
Form

• Given: preconditions or state

• When: actions taken, data submitted

• Then: behavior expected, system results

Givens — Whens — Thens

https://github.com/cucumber/cucumber/wiki/Given-When-Then

https://sites.google.com/site/unclebobconsultingllc/the-truth-about-bdd

https://github.com/cucumber/cucumber/wiki/Given-When-Then
https://sites.google.com/site/unclebobconsultingllc/the-truth-about-bdd

Example

https://github.com/techtalk/SpecFlow-Examples/blob/master/ASP.NET-MVC/BookShop/BookShop.AcceptanceTests/US01_BookSearch.feature

Gherkin Syntax from
Cucumber

https://github.com/cucumber/cucumber/wiki/Gherkin

	1:	Feature:	Some	terse	yet	descriptive	text	of	what	is	desired	
	2:			Textual	description	of	the	business	value	of	this	feature	
	3:			Business	rules	that	govern	the	scope	of	the	feature	
	4:			Any	additional	information	that	will	make	the	feature	easier	to	understand	
	5:		
	6:			Scenario:	Some	determinable	business	situation	
	7:					Given	some	precondition	
	8:							And	some	other	precondition	
	9:					When	some	action	by	the	actor	
10:							And	some	other	action	
11:							And	yet	another	action	
12:					Then	some	testable	outcome	is	achieved	
13:							And	something	else	we	can	check	happens	too	
14:		
15:			Scenario:	A	different	situation	
16:							...	

https://github.com/cucumber/cucumber/wiki/Gherkin

More Examples
• SpecFlow BookShop Sample

https://github.com/techtalk/SpecFlow-Examples/tree/master/ASP.NET-MVC/BookShop

• Unit tests, Acceptance tests, Selenium tests of UI

• Test Automation

• http://specflow.org/getting-started/

https://github.com/techtalk/SpecFlow-Examples/tree/master/ASP.NET-MVC/BookShop
http://specflow.org/getting-started/

Selenium

• Web browser automation

• Selenium WebDriver (Java, C#, Python, Ruby, Perl,
PHP, JavaScript)

• Selenium IDE (Firefox)

• Demo or YouTube (https://www.youtube.com/watch?v=gsHyDIyA3dg)

https://www.youtube.com/watch?v=gsHyDIyA3dg

The Plan for Us
• Write Acceptance Tests for Every User Story in the Sprint

- in Gherkin Syntax

- 1 User Story == 1 Feature, >=2 Scenarios

- need good coverage of the user story

- each Feature in its own feature file in a testing folder in your repository, named
with the user story ID from VSTS,i.e. ID53.feature, and containing all Scenarios

- Use Selenium (by hand) to perform every test, recording it and saving in a test
suite for regression tests. Save scripted tests to same folder in repo with same
ID

- Be able to run all tests and show green board during Sprint Review mtg.

- Maintain spreadsheet file to show status of tests

- The feature file replaces the acceptance tests in VSTS (i.e. don’t enter
acceptance tests in VSTS for new user stories)

http://www.wou.edu/~morses/cs46X/resources/ITestPanel.xlsx

ID Scenario	Title Tester Date Result Notes

53
Home	page	has	convenient	link/button	to	view	
past	reports

morses 4/18/17 PASS

53
Home	page	has	convenient	link/button	to	
create	a	new	report

morses 4/18/17 PASS

54
Meetings	page	shows	past	meetings	in	reverse	
chronological	order

morses 4/18/17 PASS

55
Admin	user	has	all	admin	links	on	navbar,	all	
work	correctly

morses 4/18/17 FAIL
"Home"	link	is	incorrect;	shows	
"/Admin/Reports?Length=4",	should	be	"/Admin/Index"

Team	Falcon	Precision	Development
Integration	Test	Panel

http://www.wou.edu/~morses/cs46X/resources/ITestPanel.xlsx

