Chapter 31: Defense Against Diseases: The Immune Response

BI 103 Midterm 2

<table>
<thead>
<tr>
<th>Range</th>
<th># Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-34</td>
<td>5</td>
</tr>
<tr>
<td>35-44</td>
<td>10</td>
</tr>
<tr>
<td>45-54</td>
<td>5</td>
</tr>
<tr>
<td>55-64</td>
<td>15</td>
</tr>
<tr>
<td>65-79</td>
<td>20</td>
</tr>
<tr>
<td>80-89</td>
<td>15</td>
</tr>
<tr>
<td>90-100</td>
<td>5</td>
</tr>
</tbody>
</table>

How Does a Body Defend Against Invasion?

Microbes:
- Viruses
- Bacteria
- Fungi
- Protists

Chapter 31: Immune System

Barriers (1st Line of Defense):
- Prevent microbes from entering body
 1. **Skin:**
 - Inhospitable environment:
 - Dry, nutrient-free zone
 - Sweat/oil gland secretions (antibiotics)
 - Skin sloughed off
 2. **Mucous Membranes** (digestive, respiratory, urogenital tracts):
 - Secrete mucus (traps microbes):
 - Antibacterial enzymes
 - Cilia sweep up mucus (swallowed)

Chapter 31: Immune System

Non-specific Internal Defenses (2nd Line of Defense):
- Attack wide variety of microbes that penetrate barriers
 1. **Phagocytic Cells** (leukocytes):
 - Macrophages (“big eaters”)
 - Ingest microbes via phagocytosis
 - Natural Killer Cells
 - Attack virus-infected / cancer cells
 2. **Inflammation** (“to set on fire”)
 - Wounded region → red, swollen and warm:
 - Damaged cells 1) release histamine (‘leaky vessels’-swelling)
 2) initiate blood clotting
 3) attract macrophages (Clean area)
 3. **Fever** (↑ body temperature)
 - Combats large-scale infections (turn up thermostat - hypothalamus)
 - Function: 1) increases macrophage activity
 2) slows bacterial reproduction

(Figure 31.4)
Chapter 31: Immune System

Specific Immune Response (3rd Line of Defense):
- Complex attack against specific target (organism / toxin)
- **Immune System**: Cells / molecules that work together to combat the microbial invasion
- Key Players (leukocytes : lymphocytes):
 - **B cells** = Mark / inactivate foreign invaders in blood
 - **T cells** = Destroy foreign invaders in cells
 - **Table 31-1** (Overview of cell types...)

Fundamental Steps in Immune Response:
1) **Antigen**: Molecule located on cell surface which triggers an immune response.
 - **B cells produce antibodies** which recognize antigens
 - **Antibody structure**:
 - Y-shaped
 - 4 chains (2 light; 2 heavy)
 - Variable / constant regions
 - Antigen binding site
 - High specificity

Why doesn’t our immune system destroy our own cells?
Answer: Major Histocompatibility Complex (MHC):
- Unique set of proteins / polysaccharides which identify “self” cells of body
- Act as antigens in other individual’s bodies

Fundamental Steps in Immune Response:
2) **Humoral Immunity** (B cells / circulating antibodies):
 - Attacks invaders (bacteria, protists, fungi) prior to cell entry
 1) B cell antibody receptor binds antigen
 2) Activated B cell divides rapidly (clonal selection):
 a) **Memory cells** (Future immunity)
 b) **Plasma cells**: ↑ antibodies (released into blood)

Clonal Selection:
Chapter 31: Immune System

Fundamental Steps in Immune Response:

2) Immune system must launch attack...

A) Humoral Immunity (B cells / circulating antibodies):
- Attacks invaders (bacteria, protists, fungi) prior to cell entry
 1) B cell antibody receptor binds antigen
 2) Activated B cell divides rapidly (clonal selection):
 a) Memory cells (Future immunity)
 b) Plasma cells: ↑ antibodies (released into blood)
 3) Antibodies destroy invaders:
 - Inactivate invader (binding)
 - Cause invaders to clump together
 - Coat invaders with blood proteins

B) Cell-mediated Immunity (T cells):
- Attacks invaders (viruses, cancers) after they enter body cells
 1) Cytotoxic T cells:
 - Release proteins → disrupt plasma membrane
 2) Helper T cells:
 - Stimulate immune cells (via hormones)
 - Destroyed by AIDS virus
 3) Suppressor T cells:
 - Activated following infection; shut down B / T cells
 4) Memory T cells:
 - Protect body against future invasion

Chapter 31: Immune System

Medical Care Augments Immune Response:

1) Antibiotics: Slow down microbial reproduction (not viruses)
 - Problem: Antibiotic resistant strains
2) Vaccinations: Injection of killed microbes to confer immunity
 - Stimulates development of memory cells

Chapter 15: Immune System

Malfunctions of Immune System:

1) Allergies: Adverse reaction to harmless substances
 - B cells recognize substance as antigen (histamine release)
 - Anaphylactic Shock
2) Autoimmune Disease: Body mistakes own cells as invaders
 - Diabetes mellitus (Type I): Destruction of pancreatic cells
 - Multiple Sclerosis: Destruction of neuron insulation (myelin)
3) Immunodeficiency Disease:
 - Severe Combined Immune Deficiency (SCID): ("Bubble Boy")
 - Acquired Immune Deficiency Syndrome (AIDS)
4) Cancer: Unchecked growth of tumor cells
 - Cells evade / overwhelm immune system