Transport System of the Body:

Cell

External environment:

Nutrients
Waste

O₂ / Energy

Nutrients
Waste

CO₂ / Waste

Too Much Time

Cardiovascular System: Blood

Blood:
- Only fluid tissue in body (connective tissue)
- pH = 7.35 – 7.45 (slightly alkaline)
- Temp. slightly higher than body temp. (38°C / 100.4°F)
- ~ 8% body weight (♂ = 5-6 L; ♀ = 4-5 L)

Function ("River of Life"):
1) Distribution
 - Delivers oxygen / nutrients
 - Carries away metabolic wastes
 - Transports hormones
2) Regulation
 - Maintains body temperature / pH
 - Maintains fluid volumes
3) Protection
 - Prevents blood loss (e.g., clot formation)
 - Prevents infection (e.g., antibodies)

Blood Components:

A) Plasma

- Distributes materials / heat

Composition: (precisely maintained)

A) Water (~ 90%)

B) Protein (~ 8%)

C) Other solutes (~ 2% >100 different solutes present; Table 17.1)

- Organic nutrients (e.g., glucose)
- Nitrogenous waste (e.g., urea)
- Electrolytes (e.g., sodium)
- Respiratory gases (e.g., O₂)
Blood Components:
B) Erythrocytes (red blood cells – RBCs)
- Small (~7 μm; biconcave (“cute”)
- Anucleate (lacking nucleus); few organelles
- Contain hemoglobin (O₂ / CO₂ transport protein)

Heme (O₂-binding pigment w/ iron) + Globin (protein)

Structure complements function
1) Small size and shape equates to large surface area / volume
2) 97% of cell volume is hemoglobin (~250 million hemoglobin)

Mass transport of respiratory gases
3) Lack mitochondria (don’t burn oxygen)

Efficient transport of respiratory gases

Erythropoiesis (red blood cell formation):
- ~2 million RBCs produced per second
- Formation occurs in red bone marrow

Entire process takes ~15 days

Erythropoiesis (red blood cell formation):
- Dietary requirements must be met for normal RBC formation

Iron: (hemoglobin synthesis)
- Stored in liver & spleen in protein iron complexes ferritin and hemosiderin

Vitamin B₁₂ and folic acid necessary for proper DNA synthesis

Free iron ions toxic!
- Acts as a catalyst for the formation of free radicals

Cardiovascular System – Blood

Blood Components:
B) Erythrocytes (red blood cells – RBCs)
- Regulated hormonally by erythropoietin
B) **Erythrocytes** (red blood cells – RBCs)

Blood Components:

- **Cardiovascular System – Blood**

Pathophysiology:

- **Anemia** (loss of oxygen carrying capacity of blood)
 - Decreased number of RBCs
 - Decreased hemoglobin content

Destruction of Erythrocytes

- “Old” RBCs engulfed by macrophages in spleen / liver
 - Lose flexibility
 - Iron salvages; stored for re-use
 - Heme group degraded to bilirubin
 - Bilirubin (yellow pigment)
 - Liver converts bilirubin to biliverdin
 - Biliverdin stored for re-use
 - Globins recycled to amino acids

Jaundice: Yellowing of skin due to bilirubin deposition

Bilirubin (captured by liver; released via gallbladder)
- **Urobilinogen** (metabolized in large intestine)
- **Stercobilin** (brown pigment)
 - Exits in feces

Hemolysis

- Hemorrhagic anemia (blood loss)
- Hemolytic anemia (RBC rupture)
- Aplastic anemia (red marrow destruction)

Iron deficiency anemia (inadequate intake of iron)
- Pernicious anemia (deficiency of vitamin B12)

Microcytes
- **Sickle-cell anemia** (genetic mutation – abnormal globin)

Macrocytes
- **Thalassemias** (genetic mutation – missing globin)

EPO
- Whole blood

Polycythemia increases blood viscosity, causing it to flow sluggishly

Polycythemia vera (bone marrow cancer)
- **Secondary polycythemia** (high altitude living)

Leukocytes (white blood cells – WBCs)

Categories of Leukocytes:

- **Granulocytes** (contain granules)
 1. Neutrophils (50 – 70%)
 - Small granules
 - Multi-lobed nucleus
 - Engulf bacteria / fungi
 2. Eosinophils (2 – 4%)
 - Large granules (lysosomes)
 - Bi-lobed nucleus
 - Kills parasitic worms
 3. Basophils (< 1%)
 - Large granules
 - U-shaped nucleus
 - Vasoconstriction / attracts WBCs

- **Agranulocytes** (lack granules)
 1. Lymphocytes (15 – 45%)
 - Large nucleus (spherical)
 - Function in immune response
 2. Monocytes (3 – 8%)
 - Largest of WBCs
 - Function as macrophages (differentiate in tissues)

Lifespan = hours – decades

Lifespan = hours – months
Cardiovascular System – Blood

Blood Components:

C) Leukocytes (white blood cells – WBCs)

Leukopoiesis (white blood cell formation):

- Lymphoid stem cell
 - Migrate to lymphoid tissue
 - Lymphoblast
 - Lymphocyte

- Myeloid stem cell
 - Myeloblast
 - Myelocyte
 - Eosinophilic myelocyte
 - Basophilic myelocyte
 - Neutrophilic myelocyte
 - Neutrophilic band cell
 - Eosinophilic band cell
 - Basophilic band cell

Hemopoiesis (red blood cell formation):

- Hemocytoblast
 - Megakaryoblast
 - Megakaryocyte
 - Thrombocytes

Blood Components:

D) Platelets (thrombocytes)

Thrombopoiesis (platelet formation):

- Myeloid stem cell
- Hemocytoblast
- Megakaryoblast
- Megakaryocyte
- Platelets

Hemostasis (‘stoppage of bleeding’):

- Series of fast, localized reactions to halt blood loss

Phase 1:
- Vascular spasm

Phase 2:
- Platelet plug formation
 - Vasoconstriction of damaged vessel
 - Temporarily seals vessel break (positive feedback loop)

Phase 3:
- Coagulation (blood clotting)

Blood converted from liquid to gel (3–6 minutes)

- Requires clotting factors (procoagulants)

Pathophysiology:

Leukemia:

- Uncontrolled proliferation of WBCs (leukocytes)

- Named according to abnormal cell line involved

Acute leukemia:
- Derived from blast-type cells
- Rapid advancement
- Often observed in children

Chronic leukemia:
- Derived from later cell stages
- Slow advancement
- Often observed in elderly

Symptoms:

- Anemia / bleeding problems
- Fever / weight loss
- Frequent infections

Treatment:

- Irradiation
- Chemotherapy
- Bone marrow transplant

Lymphocytic leukemia

Mononucleosis:

- Excessive number of agranulocytes

- Epstein-Barr virus

- Often associated with infectious mononucleosis

- May involve acute lymphoblastic leukemia

- Often observed in children

- Frequent infections

- Bone marrow transplant

Leukemia:

- Uncontrolled proliferation of WBCs (leukocytes)

- Derived from blast-type cells

- Rapid advancement

- Often observed in children

- Frequent infections

- Bone marrow transplant

Myelocytic leukemia

- Derived from later cell stages

- Slow advancement

- Often observed in elderly

- Bone marrow transplant

- Excessive number of agranulocytes

- Epstein-Barr virus

- Often associated with infectious mononucleosis

- May involve acute lymphoblastic leukemia

- Often observed in children

- Frequent infections

- Bone marrow transplant
Hemostasis (‘stoppage of bleeding’): Series of fast, localized reactions to halt blood loss

Cardiovascular System – Blood

Step 1: Formation of prothrombin activator

<table>
<thead>
<tr>
<th>Factor Number</th>
<th>Factor Name</th>
<th>Nature</th>
<th>Source</th>
<th>Pathway</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Fibrogen</td>
<td>Plasma-protein</td>
<td>Liver</td>
<td>Common pathway</td>
<td>converted to fibrin; part of coagulation cascade of blood</td>
</tr>
<tr>
<td>II</td>
<td>Prothrombin</td>
<td>Plasma-protein</td>
<td>Liver</td>
<td>Common pathway</td>
<td>converted to thrombin; part of coagulation cascade of blood</td>
</tr>
<tr>
<td>III</td>
<td>Thromboplastin (PF)</td>
<td>Plasma protein</td>
<td>Platelets</td>
<td>Initiation of coagulation cascade of blood</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Calcium ions</td>
<td>Inorganic ion</td>
<td>Plasma</td>
<td>Needed for activity of some of the other coagulation factors</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Proaccelerin</td>
<td>Plasma-protein</td>
<td>Liver, plasma</td>
<td>Common pathway</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>Proconvertin</td>
<td>Plasma-protein</td>
<td>Liver, plasma</td>
<td>Intrinsic pathway</td>
<td>activates factors IX, X, XI, XII</td>
</tr>
<tr>
<td>VIII</td>
<td>Calcium ions</td>
<td>Inorganic ion</td>
<td>Plasma</td>
<td>Required for activity of some of the other coagulation factors</td>
<td></td>
</tr>
<tr>
<td>IX</td>
<td>Factor VIII</td>
<td>Plasma-protein</td>
<td>Liver</td>
<td>Required for activity of some of the other coagulation factors</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Factor IX</td>
<td>Plasma-protein</td>
<td>Liver</td>
<td>Required for activity of some of the other coagulation factors</td>
<td></td>
</tr>
<tr>
<td>XI</td>
<td>Factor XI</td>
<td>Plasma-protein</td>
<td>Liver</td>
<td>Required for activity of some of the other coagulation factors</td>
<td></td>
</tr>
<tr>
<td>XII</td>
<td>Factor XII</td>
<td>Plasma-protein</td>
<td>Liver</td>
<td>Required for activity of some of the other coagulation factors</td>
<td></td>
</tr>
<tr>
<td>XIII</td>
<td>Factor XIII</td>
<td>Plasma-protein</td>
<td>Liver, plasma</td>
<td>Required for activity of some of the other coagulation factors</td>
<td></td>
</tr>
</tbody>
</table>

Step 2: Formation of thrombin

Step 3: Formation of fibrin mesh

Clot Retraction / Repair:

- Released by platelets; stimulates smooth muscle cells and fibroblasts to divide and rebuild vessel wall

Fibrinolysis:

- Process of removing clot once healing has occurred

Disorders of Hemostasis:

Thromboembolic Disorders

- Thrombus: A clot develops in an unbroken blood vessel
- Embolus: A free-floating clot in the bloodstream (may lead to embolism)

Bleeding Disorders

- Hemophilia A: Factor VIII deficiency
- Hemophilia B: Factor IX deficiency
- Petechiae: Small purplish spots on the skin
- Thrombocytopenia: Deficiency in platelets

Anticoagulants:

- Factors that inhibit clotting (e.g., heparin)

Symptoms:

- Prolonged bleeding
- Disabled / painful joints

Treatment:

- Plasma transfusions
- Injection of clotting factor(s)