Reproductive System

In the beginning...

Fertilized egg
(undifferentiated gonad)

Genetic sex

XY XX

Reproductive System

Sex Chromosomes

Autosome
Reproductive System

In the beginning...

Gonads:
Endocrine glands specialized to support development and maturation of germ cells

Fertilized egg (undifferentiated gonad)

Genetic sex
XY
XX

Gonadal sex
Testes
Ovaries

(Week 7)

(Week 9)

Sex-determining Region of Y chromosome (SRY gene) induces formation of testes

Undifferentiated gonad
(Cortical and medullary regions)

Testes
Mesodermal region of undifferentiated gonad develops

Ovary
Cortical region of undifferentiated gonad develops

Phenotypic Sex:
• The physical characteristics of the internal genital tract and the external genitalia

Differentiation of internal genital tracts:

Wolffian ducts (♂) and Mullarian ducts (♀) present in undifferentiated embryo

Testosterone

Antimüllarian hormone

Testosterone triggers Wolffian duct differentiation:
• Epididymis
• Vas deferens
• Seminal vesicles

Antimüllarian hormone inhibits development of Mullarian ducts

Phenotypic sex
Male phenotypic sex
Female phenotypic sex
Reproductive System

Phenotypic Sex:
- The physical characteristics of the internal genital tract and the external genitalia

Differentiation of internal genital tracts:

- Wolffian ducts (♂) and Müllerian ducts (♀) present in undifferentiated embryo

- NO testosterone triggers Wolffian duct atrophy
- NO antimüllarian hormone triggers Müllerian duct differentiation:
 - Fallopian tubes
 - Uterus
 - Vagina

Differentiation of external genitalia:

- Female external genitalia develops in absence of Y chromosome:
 - Clitoris
 - Labia

- Male external genitalia depends on production of dihydrotestosterone (DHT)
 - Penis
 - Scrotum

Take Home Message:

“Males are merely females who are ‘hopped up’ on testosterone”
Pathophysiology:

True hermaphrodite:
Both ovarian and testicular tissue present in an individual
• External genitalia often ambiguous
 Cause:
 • Fusion of zygotes
 • Mutation in the SRY gene

Pseudohermaphrodite:
Individuals have gonads of one sex and external genitalia of opposite sex
Male pseudohermaphrodite:
 gonads = ♂; genitalia = ♀
 • Lack of testosterone
 • Receptor defect / absence
 • Pathway defect

Phenotypic Sex:
Reproductive System

Lynn Elizabeth Harris

Cause:
Lynn Edwards Harris

Pseudohermaphrodite:
Individuals have gonads of one sex and external genitalia of opposite sex
Male pseudohermaphrodite:
 gonads = ♂; genitalia = ♀
 • Lack of testosterone
 • Receptor defect / absence
 • Pathway defect

Puberty:
Reproductive System

Genetic component to onset of maturational process

Puberty:
• Gonadal function driven by hypothalamic-pituitary axis:

Boys:
Increasing LH & FSH trigger testosterone production
 • Leydig cell proliferation
 • Testicular growth (interstitial cells / tubules)
 • Accessory gland growth (e.g., prostate)
 • Initiation of spermatogenesis

Girls:
Increasing LH & FSH trigger estrogen production
 • Follicular cell development
 • Initiation of oogenesis

EVENTS OF PUBERTY

Male
 • Puberty
 • Male growth

Female
 • Puberty
 • Breast development
 • Menarche
 • Growth spurt

Costanzo (Physiology, 4th ed.) Figure 10.3
Costanzo (Physiology, 4th ed.) Figure 10.2

Women and pregnant women should wash or handle this product...
Male Reproductive System

- **Reproductive System**
 - Testes (spermatogenesis)
 - Duct system (spermatozoa transport)
 - Accessory glands (semen)

Semen = spermatozoa (20 – 100 million) + seminal fluids (2 – 5 ml)

1. **Testes**
 - Descend from abdominal cavity at ~7 months in utero
 - Cryptorchidism (hidden testis)
 - Undescended testis(es)
 - ~3% full-term (~30% premies)
 - Undescended = sterility
 - Spermatogenesis requires 35 - 36°C temperatures

2. **Spermatic cord**
 - Ductus deferens
 - Blood vessels
 - Nerves
 - Lymphatic vessels

3. **Spermatic cord** passes through inguinal canal (weak point – inguinal hernia)

4. **Spermatogenesis requires 35 - 36°C temperatures**
 - 1. Scrotum (two separate chambers)
 - 2. Countercurrent exchange

5. **Countercurrent exchange**
 - 1 - 2°C below body temperature
Testes:
- Spermatogenesis
- Testosterone production

Spermatogenesis:
- Spermatogonia (stem cell)
- Mitosis
- Spermatocytes (diploid)
- Meiosis (crossing over)
- Spermatids (haploid)
- Spermiogenesis
- Spermatzoa (haploid)

Semeniferous tubules:
- Slender, tightly coiled tubules (sperm production)
- Rete testis: Passageways collecting sperm from seminiferous tubules

Semeniferous tubule
- ~ 0.5 miles / testis

Rete testis

Tunica vaginalis
- Two-layered, derived from peritoneum

Tunica albuginea
- Divides testis into lobules

Spermatogenesis:
- ~ 14 yrs. of age
- 9 week process
- 128 million / day

Leydig Cells
- Interstitial cells
- Produce testosterone

Sertoli cells
- Sustentacular cells
- Provide nourishment to developing sperm
- Form tight junctions; ‘blood – testis barrier’
- Secrete fluids to assist sperm transport

Testes - Histology:

Reproductive System

Reproductive System
1) **Head:**
 - Nucleus - contains DNA
 - Acrosomal cap
 - Hydrolytic enzymes
 - Egg penetration

2) **Midpiece:**
 - Mitochondria; ATP synthesis

3) **Tail:**
 - Flagellum; movement
 - Lack most intracellular structures
 - Nutrients from environment

Testes - Spermatogenesis:

- **Head**
 - Nucleus - contains DNA
 - Acrosomal cap
 - Hydrolytic enzymes
 - Egg penetration

- **Midpiece**
 - Mitochondria; ATP synthesis

- **Tail**
 - Flagellum; movement
 - Lack most intracellular structures
 - Nutrients from environment

Testes - Testosterone Synthesis:

- **Reminder:**
 - Cholesterol
 - Pregnenolone
 - 17-hydroxyprogrenolone
 - Dehydroepiandrosterone
 - Androstenedione
 - Adrenal glands (zona reticularis)

Testes - Regulation of Activity:

- **Luteinizing hormone (LH):**
 - Stimulates testosterone synthesis
 - (Stimulates cholesterol desmolase activity)

- **Follicle stimulating hormone (FSH):**
 - Stimulates spermatogenesis
 - Stimulates Sertoli cell function

Testosterone binds to intracellular receptor (nuclear)

- Differentiation of internal and external genitalia (works in conjunction with dihydrotestosterone)
- Stimulates spermatogenesis (paracrine activity)
- Stimulates secondary sexual characteristics
 - ↑ sex organ growth
 - ↑ sebaceous gland activity
 - ↑ hair growth (axillary / pubic)
 - Deepens voice
- Stimulates growth of musculature
- Acne

Anabolic steroids: Promote general body growth without masculinizing other regions

Reploglione: smooth muscle contraction

Fibrinogen: temporarily clot vagina

Buffers; neutralize acids

- ↑ (prostate) sperm activation
- Seminalplasmin; antibiotic
- Bulbs; neutralize acids

Benign prostate hyperplasia

- Thick, alkaline solution (buffer / lubricant)
Female Reproductive System:

- **Ovaries** (oocyte production)
- **Duct system** (oocyte transport)
- **Development system** (nourish fetus)

Ovaries:
- Oogenesis
- Estrogen / Progesterone production

Ovarian follicle (functional unit)
- Provides nutrients for developing oocyte
- Release oocyte at proper time (ovulation)
- Prepare duct system for fertilization
- Prepare uterus for implantation
- Maintain fetus during opening weeks
Oogenesis (ovum production – long process):

Atresia: Degeneration of primary oocytes

Puberty = < 400,000 primary oocytes remaining
Menopause = < 0 primary oocytes remaining

Remember: ~ 500 eggs released / life

Primary Oocytes (~ 2,000,000)

Mitosis

Secondary Oocyte

1st polar body

Mature Ovum

Oogenesis occurs within ovarian follicles

1) Primary Follicle
 - Granulosa cells enlarge / replicate
 - Zona Pellucida: Acellular matrix; Increases surface area around egg

2) Secondary Follicle
 - Thecal cells develop
 - Oocyte increases in size
 - Open spaces develop

3) Tertiary Follicle
 - Thecal layer enlarges
 - Central chamber appears (antrum)

4) Ovulation
 - Primary oocyte matures to secondary oocyte (1st polar body formed)
 - Ovarian wall ruptures

5) Corpus Luteum
 - Thecal / granulosa cells collapse; form endocrine structure
 - Pregnancy = CL remains
 - No Pregnancy = CL degenerates (14 days)
Estrogen synthesized by granulosa & thecal cells

Thecal cells
Granulosa cells

Progesterone synthesized by thecal cells

Thecal cells
Granulosa cells

Estrogen / Progesterone levels vary during female reproductive cycle

Predominately estradiol
Predominately progesterone

(Mensus)

 Corpora lutea
Ovulation

Basal lamina
Reproductive System

Ovary:

Estrogen / Progesterone levels regulated via positive & negative feedback

Follicular Phase:

- **Hypothalamus**
 - GnRH
 - **Gonadotroph-releasing hormone**
 - **Anterior Pituitary**
 - LH
 - (+)
 - **Arcuate nucleus**
 - Gonadotroph
 - releasing hormone
 - **Estrogen**
 - (+)
 - **FSH**
 - (<)
 - Estrogen
 - [low]

 - Luteinizing hormone (LH):
 - Stimulates Estrogen synthesis
 - (↑ cholesterol desmolase activity)
 - Follicle stimulating hormone (FSH):
 - Stimulates growth of granulosa cells
 - Stimulates Estrogen synthesis

Midcycle:

- Critical level of estrogen reached; estrogen triggers surge of LH / FSH
 - High E2 levels upregulate GnRH receptors on gonadotrophs
 - LH / FSH trigger ovulation

Luteal Phase:

- Corpus luteum forms; begins synthesizing progesterone
 - Granulosa cells reduce / abolish aromatase activity
 - Birth Control Pill

Birth Control Pill

- **Estrogen / Progesterone levels regulated via positive & negative feedback**

- **Luteal**
 - **Corpus luteum**
 - Begins synthesizing progesterone
 - Granulosa cells reduce / abolish aromatase activity
 - Birth Control Pill

- **Luteinizing hormone (LH):**
 - Stimulates Estrogen synthesis
 - (↑ cholesterol desmolase activity)
 - Follicle stimulating hormone (FSH):
 - Stimulates growth of granulosa cells
 - Stimulates Estrogen synthesis

- **FSH**
 - (<)
 - Estrogen
 - [low]

- **GnRH**
 - (+)
 - **Anterior Pituitary**
 - LH
 - (+)
 - **Arcuate nucleus**
 - Gonadotroph
 - releasing hormone
 - **Estrogen**
 - (+)
 - **FSH**
 - (<)
 - Estrogen
 - [low]
Estrogen binds to intracellular receptor (nuclear)

- Differentiation of internal and external genitalia
- Prepares reproductive tract for insemination
 - cell proliferation / increased contractility in uterus
 - cell differentiation / ciliary activity in fallopian tubes
 - stimulates cell proliferation and keratinization in vagina epithelium
- Stimulates secondary sexual characteristics
 - Pubertal growth spurt
 - Closure of epiphyseal plates of bones
 - Deposition pattern of subcutaneous fat
- Stimulates breast development:
 - Growth of lobular ducts
 - Enlargement of areola
 - ↑ adipose tissue

Progesterone binds to intracellular receptor (nuclear)

- Maintains reproductive tract for pregnancy
 - ↑ secretory activity / ↓ contractility in uterus and fallopian tubes
 - ↑ cell differentiation / inhibits cell proliferation in vagina
- Stimulates breast development:
 - ↑ secretory activity
- Mild thermogenic activity
- "Rhythm" method of birth control

Duct / Development System:

- Infundibulum: Expanded funnel
- Fimbriae: Finger-like projections (collect egg)
- Isthmus: Connection of tube to uterus wall
- Trip takes 3 – 4 days
 - Fertilization must occur within ~ 24 hours of release
- 1) Mechanical protection
- 2) Nutritional support
- 3) Waste removal
- 4) Ejection
14

Endocrine System

Duct / Development System:

Uterine Cycle: (28 days)

1) Menses: Endometrium sloughs off from uterine wall (~7 days)
 - Collagen deposits (3–5 mm)
 - Thickened mucus provide access channels for sperm.

2) Follicular Phase: Cells multiple across endometrium (~7 days)
 - Connective tissue / extracellular collagen deposits (3–5 mm)
 - If no implantation, lymphocytes invade endometrium; sloughing begins due to loss of progesterone

3) Secretory Phase: Endometrial glands enlarge / increase secretions (~14 days)
 - Endometrium sloughs off from uterine wall (~7 days)

Endometrium / myometrium

Uterus layers

Endometrium

Myometrium

Luteal Phase

Non-fertile Cycle