



















Electrolyte Balance: B) Potassium Balance	Chapters 25: Fluid / Electrolyte / Acid-Base Balance	Hypokalemia Hyperkalemia	
	Importance:		
	e: 1) Maintains neuron	1) Maintains neuron / muscle function	
	2) Assists in mair	2) Assists in maintenance of pH	
As a rule, K ⁺ levels in ECF sufficiently high that K ⁺ needs to be secreted			
Rate lost at kidney depends on:			
 Changes in [K+] of ECF (↑ [K+] = ↑ rate of secretion) 			
2) Changes	 Changes in pH (↓ pH = ↓ rate of secretion) 		
3) Aldosterone levels (↑ aldosterone = ↑ rate of secretion)			
C) Calcium Balance:	Importa	nce:	
	Maintains neuron / muscle function Allows for normal blood clotting		n
 Levels in ECF regulation 1) ↑ PTH = ↑ 	ulated primarily by parathyroid hormor bone desorption	ne:	Chvostek's sign
2) ↑ PTH = ↑	intestinal Ca ⁺⁺ absorption renal Ca ⁺⁺ reabsorption	Hypocalcemia =	

Chapters 25: Fluid / Electrolyte / Acid-Base Balance Acidosis = pH < 7.35Acid-Base Balance: Alkalosis = pH > 7.45 Critical for body to maintain pH between 7.35 - 7.45 Problems Encountered: 1) Disruption of cell membrane stability 2) Alteration of protein structure 3) Enzymatic activity change Acid Types: 1) Volatile Acids: Acids that can leave solution and enter the atmosphere $\mathsf{CO_2} \quad + \quad \mathsf{H_2O} \quad \Longleftrightarrow \quad \mathsf{H_2CO_3} \quad \Longleftrightarrow \quad \mathsf{HCO_3}^{\cdot} \quad + \quad \mathsf{H}^{+}$ carbonic acid 2) Fixed Acids: Acids that do not leave solution • Result from metabolism (e.g., phosphoric acid / lactic acid / ketone bodies) · Can only be eliminated via kidneys Chapters 25: Fluid / Electrolyte / Acid-Base Balance Acid-Base Balance: H+ Gain: H+ Loss: · Across digestive epithelium · Release at lungs · Cell metabolic activities · Secretion into urine Chemical Buffering Systems: Dissolved compounds that neutralize H+ during transport by binding H+ when pH drops and releasing H+ when pH rises 1) Bicarbonate Buffer System: (primary ECF buffer) $H_2CO_3 \iff HCO_3^- + H^+$ • Limitation: Can't protect system from pH changes resulting from elevated / depressed CO₂ levels Respiratory system must be working normally Chapters 25: Fluid / Electrolyte / Acid-Base Balance Acid-Base Balance: 2) Phosphate Buffer System: (primary ICF buffer) · Also an important buffer in urine 3) Protein Buffer System: (both ECF and ICF buffer) $R-COOH \longrightarrow$ R – COO-H+ $R - NH_2 + H^+$ \longrightarrow R - NH₃+ · Proteins are most plentiful and powerful source of buffers in body Buffers are a short-term fix to the problem; In the long term, H+ must be removed from the system...

Chapters 25: Fluid / Electrolyte / Acid-Base Balance

Disturbances of Acid-Base Balance:

1) Respiratory Acid / Base Disorders:

Cause: Hypoventilation (e.g., emphysema) (Most common acid / base disorder)

A) Respiratory Acidosis: ↑ CO₂ retained in body

2) Metabolic Acid / Base Disorders:

Causes:
Starvation
(† ketone bodies)

Alcohol consumption
(† acetic acid)

Excessive HCO₃* loss
(e.g., chronic diarrhea)

A) Metabolic Acidosis:
↑ fixed acids generated in body

In the short term, respiratory / urinary system will compensate for disorders...

Cause: Hyperventilation (e.g., stress) (Rarely persists long enough to cause clinical emergency)

B) Respiratory Alkalosis: ↓ CO₂ retained in body

Causes: Repeated vomiting (alkaline tide 'amped') Antacid overdose

A) Metabolic alkalosis: ↑ HCO₃· generated in body

7