Chapter 22: Digestive System

Converts food into raw materials necessary for cell maintenance and growth

Digestive System:
Main Divisions of Digestive System:
1) **Alimentary Canal** (gastrointestinal tract)
 - Continuous, muscular tube (lumen "outside" body)
 - Digests / absorbs food
2) **Accessory Organs**
 - Glands; line / located outside GI tract
 - Produce digestive secretions
Functions of Digestive System:

1) Ingestion
 • Taking food in (mouth)

2) Propulsion
 • Food movement through GI tract
 • Swallowing (Voluntary)
 • Peristalsis (Involuntary)

3) Mechanical Digestion
 • Physical breakdown / mixing of food
 • Chewing (oral cavity) / Mixing (stomach)
 • Segmentation

4) Chemical Digestion
 • Enzymatic breakdown of food → monomers

5) Absorption
 • Movement of monomers into blood / lymph
 • Organics / vitamins / minerals / water

6) Defecation
 • Elimination of indigestible material (via anus)

Movement of Materials Through System:

Sphincters (smooth muscle rings) regulate passage of materials through system:

1) Lips (guard entrance - voluntary)
2) Cardiac Sphincter (entrance to stomach)
3) Pyloric Sphincter (exit to stomach)
4) Iliocecal Valve (small intestine → large intestine)
5) Internal Anal Sphincter (involuntary)
6) External Anal Sphincter (voluntary)
Histology of GI Tract:

Four Layers:

1) **Mucosa** (mucous membrane)
 - 3 layers:
 - Epithelium (simple / stratified)
 - Lamina propria (areolar tissue)
 - Muscularis mucosae (smooth muscle)
 - Functions:
 - Secretes mucus
 - Absorbs monomers
 - Protects from infection

2) **Submucosa**
 - Dense irregular connective tissue
 - Nerves / vessels / lymphoid tissue / glands
 - **Plexus of Meissner** (submucosal plexus)
 - Regulates glands / muscle in mucosa

Cellular Lifespan:

- 3 – 6 days

3) **Muscularis externa**
 - Smooth muscle
 - 2 layers – circular / longitudinal
 - Mixes / propels food (e.g., peristalsis)
 - **Plexus of Auerbach** (myenteric plexus)
 - Controls GI tract mobility

4) **Serosa / Adventitia**
 - Serosa = serous membrane
 - Adventitia = no serosa; fibrous sheath
Digestive System – Oral (Buccal) Cavity:

Function:
1) Sensory Analysis
2) Mechanical Processing
3) Lubrication
4) Chemical Digestion (limited…)

1) **Tongue:**
 - Mechanical processing (compression / abrasion / distortion)
 - Assist chewing / prepare for swallowing
 - Sensory analysis
 - Chemical digestion – **Lingual lipase** (fats)
 - Contains extrinsic (gross control) and intrinsic (fine control) muscles
 - Contains papillae
 - Filiform (rough - friction)
 - Fungiform (taste buds)
 - Circumvallate (taste buds)

~ 3000
Lifespan: 10 days
Digestive System – Oral (Buccal) Cavity:

2) Salivary Glands:
 - Produce and secrete saliva (1 – 1.5 L / day)

Lubricate mouth: Protect body: Chemical digestion:
Water (~ 99.5%) Antibodies Salivary amylase (carbs)
Ions Lysozymes
Mucin (glycoproteins) Buffers

A) Intrinsic Glands (Buccal glands)
 - Inside oral cavity

B) Extrinsic Glands
 - Outside oral cavity; connected via ducts
 - Parotid / Submandibular / Sublingual
 - Serous cells (parotid / ½ submandibular)
 - Water / ions / enzymes
 - Mucous cells (sublingual / ½ submandibular)
 - Mucus (mucin / glycoproteins)

Mumps: Viral infection of Parotid gland
Salivary Control:

Stimulation of chemoreceptors and mechanoreceptors

Increased salivation (watery saliva)

Activation of parasympathetic motor neurons

Chapters 22: Digestive System

Thinking...
Smelling...
Tasting...

Salivary Control:

Release of mucus-rich saliva ("dry mouth")

Constriction of blood vessels to salivary glands

Stimulation of the sympathetic motor neurons

Chapters 22: Digestive System
Digestive System – Oral (Buccal) Cavity:

3) **Teeth:**

 Mastication = Chewing (complicated process)

 - Break down connective tissue (meat) and fibers (plants)
 - Saturate food with salivary secretions / enzymes

 ![Tooth Diagram]

 2 Sets of Teeth

 1) **Deciduous (milk)**

 - 20 total (10 top / 10 bottom)
 - In by 2 yrs. of age

 2) **Permanent**

 - 32 total (16 top / 16 bottom)
 - Incisors (cutting)
 - Premolars (crushing)
 - Canines (tearing)
 - Molars (grinding)

Digestive System – Oral (Buccal) Cavity:

3) **Teeth:**

 ![Dental Plaque Diagram]

 Layers:

 1a) **Enamel** (crown)

 - Acellular; highly mineralized

 1b) **Cementum** (root)

 - Periodontal ligament

 2) **Dentin**

 - Bone-like material (acellular)

 3) **Pulp Cavity**

 - Blood vessels, / nerves
 - Root canal
Digestive System – Esophagus:

- Conveys food / liquids to stomach (dorsal to trachea / heart)
- Contains all four histological layers
 1) **Mucosa**: Stratified squamous epithelium (non-keratinized)
 - Irregular muscularis mucosae layer
 2) **Submucosa**: Esophageal glands (mucus-secreting)
 3) **Muscularis externa** (2 layers – circular / longitudinal)
 - Superior = skeletal muscle
 - Middle = ½ skeletal / ½ smooth muscle
 - Inferior = smooth muscle
 4) Primarily **adventitia** (anchors esophagus)
Digestive Processes of Mouth → Esophagus:

1) Ingestion
2) Mechanical Digestion (e.g., mastication)
3) Chemical Digestion
 - Salivary amylase (Carbs → polysacc.) / Lingual Lipase (Lipids → fatty acids)
4) Propulsion
 - Deglutination (swallowing)
 - Buccal phase (voluntary)
 - Pharyngeal-esophageal phase (swallowing reflex – involuntary)

Time from Mouth → Stomach = 1 – 8 seconds
Food = bolus

Chapters 22: Digestive System
Digestive System – Stomach:

1) **Mucosa**: Simple columnar epithelium
 - **Goblet cells** = mucus (protection from acids / enzymes)
 - **Rugae**: Prominent folds – allow for distention
 - **Gastric Pits** (produce gastric juices – 1.5 L / day)
 - A) **Mucous Neck Cells**
 - Secrete mucus
 - B) **Parietal Cells**
 - Secrete hydrochloric acid (pH 1.5 - 3.5)
Stomach – Acid Production:

- HCl not produced directly in cytoplasm (too corrosive)

Functions:
- Kill microorganisms
- Denature proteins
- Break down cell walls / CTs
- Active digestive enzymes

Alkaline Tide:
- pH increase in gastric blood return due to HCO₃⁻ entry

Digestive System – Stomach:
1) Mucosa: Simple columnar epithelium
 - Goblet cells = mucus (protection from acids / enzymes)
 - Rugae: Prominent folds – allow for distention
 - Gastric Pits (produce gastric juices – 1.5 L / day)
 A) Mucous Neck Cells
 - Secrete mucus
 B) Parietal Cells
 - Secrete hydrochloric acid (pH 1.5 - 3.5)
 - Secrete intrinsic factor (vitamin B₁₂)
 C) Chief Cells
 - Secrete Pepsin (protein breakdown)
 - Secrete Rennin / Gastric Lipase (infants)
 D) Enteroendocrine Cells
 - Secrete hormones (e.g., G cells = gastrin)

Gastric Juices (1.5 L / day)
Digestive System – Stomach:
1) Mucosa: Simple columnar epithelium
2) Submucosa
3) Muscularis externa (3 layers – oblique / circular / longitudinal)
4) Serosa – Connective tissues / mesothelium (visceral peritoneum)

Gastric Ulcer
Breach in mucosal barrier
Digestive System – Stomach:
Stomach - Regulation of Gastric Secretion (3 phases):
1) Cephalic Phase
 • Occurs before food ingested (Sensing of food…)
 • CNS triggers gastric juice secretion (stomach preparation)

2) Gastric Phase
 • Gastric secretion triggered by distension, peptides, ↑ pH (food in stomach)
 A) Neural Response = ACh release (short reflex arc – stretch receptors)
 B) Hormonal Response = Gastrin release (chemoreceptors)
Digestive System – Stomach:
Stomach - Regulation of Gastric Secretion (3 phases):

3) Intestinal Phase
 • Gastric secretion regulated by chyme entering small intestine
 A) Enterogastric Reflex: Inhibits gastric secretions / motility
 B) Hormone Release
 \[\text{Inhibit gastric secretions} \]
 \[\begin{align*}
 \text{• Cholecystokinin (CCK) / Gastric Inhibitory Peptide (GIP)} & \quad \text{• Triggered by lipids / carbs} \\
 \text{• Secretin} & \quad \text{• Triggered by } \downarrow \text{pH in SI}
 \end{align*} \]

Carbs / liquids = fast digestive rate
fats / proteins = slow digestive rate

Digestive Processes of Stomach:
1) Mechanical Digestion (Churning of stomach)
2) Chemical Digestion
 • Pepsin (Proteins \(\rightarrow\) small peptides)
 • Rennin (milk proteins) / Gastric Lipase (fats)
3) Propulsion (Peristalsis)
4) Absorption
 • Lipid-soluble substances (\textit{e.g.}, alcohol / drugs)
Digestive System – Small Intestine:
1) Duodenum (~ 10”):
 • Receives chyme from stomach and exocrine secretions from liver / pancreas
2) Jejunum (~ 8’):
 • Chemical digestion / nutrient absorption
3) Ileum (~ 12’):
 • Joins large intestine at ileocecal valve

Modifications for Absorption:
1) Plicae circulares (circular folds)
 • Permanent folds (mucosa) / submucosa; mix chyme
2) Villi
 • Finger-like projections of mucosa; ↑ surface area
 • Lacteal: Modified lymphatic capillaries; absorb lipids
3) Microvilli
 • Finger-like projections of plasma membrane; ↑ surface area
 • Contain digestive enzymes (brush border enzymes)

Surface Area:
Without Modifications = ~ 3.5 sq. ft.
With Modifications = ~ 2200 sq. ft.
Digestive System – Small Intestine:
Contains all four histological layers:

1) **Mucosa**: Simple columnar epithelium (microvilliated)
 - Many goblet cells; scattered enteroendocrine cells
 - **Intestinal crypts** (Crypts of Lieberkuhn)
 - Secrete intestinal juices / generation of epithelial cells

2) **Submucosa**
 - **Brunner’s Glands**: Secrete alkaline mucus (neutralize chyme)
 - **Peyer’s Patches**: Lymphoid nodules

![Histological image of small intestine](image-url)
Digestive System – Small Intestine:
Contains all four histological layers:
1) Mucosa: Simple columnar epithelium (microvilliated)
 • Many goblet cells; scattered enteroendocrine cells
 • Intestinal crypts (Crypts of Lieberkuhn)
 • Secrete intestinal juices / generation of epithelial cells
2) Submucosa
 • Brunner’s Glands: Secrete alkaline mucus (neutralize chyme)
 • Peyer’s Patches: lymphoid nodules
3) Muscularis externa (2 layers – circular / longitudinal)
 Myogenic Reflexes:
 Weak peristaltic contractions (limited distance)
 Gastroenteric Reflex:
 Stimulates motility along SI
 Gastroilial Reflex:
 Triggers relaxation of iliocecal valve
4) Serosa (jejunum / ileum); Adventitia (duodenum)

Digestive System – Liver / Gallbladder:
1) Liver:
 • Largest gland in body (~ 3 lbs)
 • 4 lobes (right (largest); left; caudate; quadrate)
 • Produces bile and filters / processes blood
Digestive System – Liver / Gallbladder:
1) Liver:

Function unit = Liver lobule
(~ 100,000 / liver)
Digestive System – Liver / Gallbladder:

1) Liver:

- Hepatic Triad
 - Liver sinusoids
 - Central Vein
 - Sinusoids lack basal lamina

Chapters 22: Digestive System

Hepatocytes (Hepatic cord)

- Produce bile (emulsification)
- Processes nutrients
 - glucose → glycogen
 - amino acids → proteins
- Store fat-soluble vitamins
- Store iron (ferritin)
- Ammonia → urea
- Drug inactivation
- Toxin / antibody removal

Kupffer Cells:

- Phagocytes (pathogens / debris)
- Store iron, lipids, heavy metals
Hepatocytes (Hepatic cord)

- Produce bile (emulsification)
- Processes nutrients
 - glucose → glycogen
 - amino acids → proteins
- Store fat-soluble vitamins
- Store iron (ferritin)
- Ammonia → urea
- Drug inactivation
- Toxin / antibody removal

Kupffer Cells:
- Phagocytes (pathogens / debris)
- Store iron, lipids, heavy metals

Digestive System – Liver / Gallbladder:
1) Liver:
 - Hepatitis
 - Cirrhosis

Hepatocytes (Hepatic cord)
Digestive System – Liver / Gallbladder:

1) Liver:

Composition of Bile:

1) Bile Salts
 • Acids derived from cholesterol (e.g., cholic acid)
 • Emulsify fats
 • Recycled (Enterohepatic circulation of bile)

2) Bilirubin
 • Waste product of hemoglobin (RBCs)
 • Metabolized in gut to form urobiligen
 • Makes feces brown

3) Cholesterol / neutral fats / phospholipids

Bile DOES NOT contain enzymes that digest fats…
Digestive System – Liver / Gallbladder:

1) Liver:
 - Largest gland in body (~ 3 lbs)
 - 4 lobes (right (largest); left; caudate; quadrate)
 - Produces bile and filters / processes blood

2) Gallbladder:
 - Sack-like structure; stores / concentrates bile

Bile Flow:

- Liver
- Common Hepatic duct
- Gallbladder
- Cystic duct
- Common bile duct
- Pyloric sphincter
- Pancreatic duct
- Hepatopancreatic ampulla
- Duodenal papilla (Sphincter of Oddi)
- Stomach
- Pancreas
- Duodenum
Digestive System – Pancreas:
• Mixed endocrine / exocrine gland (exocrine = digestion)
Digestive System – Pancreas:
- Mixed endocrine / exocrine gland (exocrine = digestion)
- Exocrine cell types: (produce pancreatic juice; ~ 1 L / day)
 1) Acinar Cells
 - Produce digestive enzymes:
 - Trypsin, Carboxypeptidase, Chymotrypsin (proteins)
 - Pancreatic Amylase (carbohydrates)
 - Pancreatic Lipase (lipids)
 - Nucleases (nucleic acids)
 2) Duct Cells
 - Produce bicarbonate-rich fluid (pH ~ 8)

Regulation of Pancreatic Juice and Bile Secretion:
Digestive Processes of Small Intestine:
1) Mechanical Digestion (segmentation)
2) Chemical Digestion
 - Trypsin / Chymotrypsin / Carboxypeptidase (Proteins → small peptides)
 - Pancreatic amylase (Carbs → disaccharides)
 - Pancreatic lipase / Bile salts (Lipids → fatty acids / glycerol)
 - Nuclease (Nucleic acids → nucleotides)
3) Propulsion (Peristalsis – migrating mobility complex ~ 5-hour trip)
4) Absorption
 - Primary site of nutrient absorption

Digestive System – Large Intestine:
- Extends from ileocecal valve to anus (~ 5')
- Functions: 1) absorb water from indigestible food
 2) absorb essential vitamins
 3) store fecal material
- Contains bacterial flora
- Ferment indigestible carbohydrates (500 ml gas / day)
- Synthesize B complex vitamins and vitamin K

Antibiotics
(affect gut flora)

Diet

Promotes "good" gut flora growth

~ 1000 species
(10^{14} cells)
Digestive System – Large Intestine:

All four histological layers present:

1) **Mucosa**: Simple columnar / Stratified squamous (rectum)
 - No plicae circulares / villi; many goblet cells

2) **Submucosa**:
 - Superficial venous plexi \(\text{(hemorrhoids)}\)

3) **Muscularis externa** (2 layers – circular / longitudinal)
 - Longitudinal layer reduced to taeniae coli \(\text{(muscular band)}\)

4) **Serosa** (transverse / sigmoid); **Adventitia** (ascending / descending)
Digestive Processes of Large Intestine:

1) Absorption
 - Water: 75% water / 20% indigestible waste / 5% bacteria
 - Ions
 - Vitamins

Feces:

Water flows down concentration gradients

2) Propulsion
 - Cecum → Transverse Colon (very slow…)
 - Haustral Churning = segmentation (mixes adjacent haustra)
 - Peristalsis
 - Transverse Colon → Rectum (more rapid…)
 - Mass Movements = powerful peristaltic waves (several times / day)
 - Triggered by food in stomach (clear system…)

3) Defecation
 - Defecation Reflex: Distension of rectal wall triggers multiple positive feedback loops

Diarrhea
Constipation
Digestive Processes of Large Intestine:

1) **Absorption**

2) **Propulsion**
 - Cecum → Transverse Colon (very slow...)
 - Haustral Churning = segmentation (mixes adjacent haustra)
 - Peristalsis
 - Transverse Colon → Rectum (more rapid...)
 - Mass Movements = powerful peristaltic waves (several times / day)
 - Triggered by food in stomach (clear system...)

3) **Defecation**
 - Defecation Reflex: Distension of rectal wall triggers multiple positive feedback loops

Voluntary Control of Defecation

- **Valsalva’s Maneuver**: Forced exhalation with glottis closed
 - If pressure > 55 mm Hg in rectum, external sphincter involuntarily relaxes
Physiology of Chemical Digestion:

- **Catabolic process** (breakdown)

 Hydrolysis = addition of water at chemical bonds

 ![Hydrolysis example](image)

 Macromolecules → Monomers
 - **Carbohydrates** → Monosaccharides
 - **Proteins** → Amino acids
 - **Lipids** → Monoglycerides & Fatty acids
 - **Nucleic acids** → Bases, phosphates & ribose

Chapters 22: Digestive System

Physiology of Chemical Digestion:

1) **Carbohydrates**

- **Oligosaccharides** → **Disaccharides**
 - Salivary amylase
 - Pancreatic amylase

- **Monosaccharides**
 - Brush border enzymes
 - Galactose
 - Glucose
 - Fructose
Physiology of Chemical Digestion:

2) Proteins

Mouth → Esophagus → Stomach → Small Intestine → Large Intestine

- Peptides
 - Pepsin / HCl
 - Trypsin, Chymotrypsin, Carboxypeptidase, Brush border enzymes
 - Amino acids

3) Lipids

Mouth → Esophagus → Stomach → Small Intestine → Large Intestine

- Monoglycerides & Fatty acids
 - Bile salts, Pancreatic lipase
 - (Lingual lipase)
Physiology of Chemical Digestion:

3) **Lipids**

- Triglycerides, fatty acids & bile salts
- Simple diffusion
- Micelles
- Triglycerides & Fatty acids
- Protein Coat
- Chylomicrons
- Exocytosis
- Lacteal of lymphatic system
- Enters bloodstream @ If. subclavian vein

Chapters 22: Digestive System

- **Mouth**
- **Esophagus**
- **Stomach**
- **Small Intestine**
- **Large Intestine**

4) **Nucleic Acids**

- Bases, phosphates & ribose
- Pancreatic nucleases
- Brush border enzymes