Chapter 34: Nutrition and Digestion

Nutrition: Process of acquiring / processing nutrients into usable form

Function of Nutrients:
1) Fuel cellular metabolism
 - Measured in calories (energy required to raise 1 g of water 1°C)
 - Calorie = 1000 calories (kilo calorie)
 - Human at rest = 1550 calories burned/day
2) Building blocks to construct complex molecules
3) Molecules to assist in metabolic reactions

Nutrient Classifications:

1) Carbohydrates:
 - Energy source (~ 46% for humans)
 - Body cells burn glucose (some exclusively)
 - Energy storage (short-term): Glycogen (liver / muscles)
 - Obtained via animal products (e.g. muscle) and plants (starch)

2) Lipids:
 - Energy source (~ 38% for humans)
 - Energy storage (long-term): Fats
 - 1 pound = 3600 Calories (Carbs = 1600 Calories / pound)
 - Hydrophobic; no excess water storage
 - Provide building materials (e.g. phospholipids, cholesterol)

3) Proteins:
 - Energy source (~ 16% for humans)
 - Urea: Byproduct of protein breakdown
 - Provide building materials (amino acids)
 - Essential amino acids: Can not be synthesized by body (9 / 20 amino acids)

4) Minerals (Elements / Inorganic molecules - Table 34.3):
 - Structural material (e.g. calcium, iron, iodine)
 - Assist in physiological functions (e.g. sodium, potassium, calcium)
 - Sodium, potassium, calcium, magnesium, etc are also called electrolytes

5) Vitamins (Organic compounds - diverse group):
 - Water-soluble: Cleared from body (urine)
 - Vitamin C = Maintenance of connective tissues
 - B-vitamin complex = Coenzymes
 - Water-insoluble: Stored in body (fat)
 - Vitamin A = Produces visual pigments
 - Vitamin D = Promotes bone growth
 - Vitamin E = antioxidant
 - Vitamin K = Regulates blood clotting

Electrolytes

- Required to maintain certain functions
 - Muscles, neurons, etc.
- Imbalance causes death
- Excess water drinking leads to fatal electrolyte imbalance
- Sport drinks contain electrolytes to prevent water intoxication
Vitamin deficiencies
• Vitamin A: blindness
 We consume beta carotene, which is converted to Vitamin A in our bodies.
 Beta Carotene is found in red/orange vegetables.

Vitamin deficiencies
• Vitamin B complex
 Several different vitamin B
 Thiamin (Vitamin B1)
 Niacin (Vitamin B2)
 Pantothenic acid (Vitamin B6)
 Vitamin B12
 Biotin
 Choline
 Deficiencies lead to diseases beriberi, pellagra, anemia, & mental disorders.
 Sources: grains, legumes, animal products

Vitamin deficiencies
• Vitamin C
 Ascorbic acid
 Deficiencies lead to Scurvy
 Especially affected sailors
 Professional sailors always carried limes or other citrus fruits to ward off scurvy

Vitamin deficiencies
• Vitamin D: Rickets
 Caused by lack of calcium absorption in bones.
 Sources: sunlight, eggs, cod liver oil, dairy products

Vitamin deficiencies
• Vitamin E
 Anemia, neurological problems
 Deficiencies are very rare
 Mainly due to genetic disorders the prevent the absorption of fat.
 Seeds, green leafy vegetables, oils

Vitamin deficiencies
• Vitamin K
 Bleeding, hemorrhages
 Deficiencies rare due to production of vitamin K with the help of intestinal bacteria (E. coli).
 Excessive use of broad spectrum antibiotics can result in deficiencies.
Fat soluble vitamins can lead to overdoses

- Fat soluble vitamins are stored in the fatty tissues in the body
 - The reason why deficiencies are rare with modern diets.
 - Overdoses are becoming more common due to supplements, retinol, etc.
- Vitamin A: 15,000 IU per day or more can be toxic
 - Especially toxic to developing fetuses = birth defects
 - Liver damage

- More than 15,000 IU of Vitamin D per day can lead to overdoses
 - Most deaths are due to children eating sugar coated vitamins.

- More than 1,500 IU of Vitamin E per day can lead to overdoses
 - Excess leads to anticoagulation in blood.

Nutrient acquisition

- Herbivore
 - Eat plants
- Carnivore
 - Eat animals
- Omnivore
 - Eat plants & animals

Digestion: Mechanical and chemical breakdown of food
- Required to absorb nutrients (complex → simple)

Tasks of Digestive System:
1) Ingestion = Food enters system (mouth)
2) Mechanical Breakdown = Food physically broken down
3) Chemical Breakdown = Food broken down via enzymes
 - Increased surface area (enzyme attack)
4) Absorption = Nutrients from digestive cavity into body
5) Elimination = Indigestible material cleared

Animal Digestive Systems:
1) Intracellular Digestion (e.g., protists, sponges)
 - Cells engulf microscopic particles (no specialized system)
 1) Enclosed in food vacuole
 2) Lysosomes (organelle w/ enzymes) breakdown food
 3) Waste expelled (exocytosis)
Animal Digestive Systems:

2) Sac Digestion (e.g., jellyfish)
 - Chamber present (gastrovascular cavity); single opening
 - Extracellular Digestion (enzymes released into chamber)
 - Food enters / waste exits same opening

Animal Digestive Systems:

3) Tube Digestion (e.g., worms, arthropods, vertebrates)
 - Tube present; two openings (mouth, anus)
 - Efficient digestion of food (one-way system):
 - Crop / Stomach #1 = Food storage
 - Stomach #2 / Gizzard = Mechanical digestion
 - Intestines = Chemical digestion / Absorption

gizzard

- Many toothless animals (i.e., birds) will swallow stones to aid digestion.
 - Stones help grind food inside the gizzard

Crop

- Pigeons, doves and flamingoes produce crop milk
 - A secretion produced by the crop that is used to feed the young.

Highly Specialized Tube Digestion:

Ruminants Digest Cellulose...

- Mixes food with cellulase
 - Cellulase produced by bacteria in the rumen

Human Digestive System:
Process of Human Digestion:

1) Breakdown of Food begins in Mouth
 - Mechanical breakdown = Teeth
 - Incisors: Snip food
 - Canines: Tear food
 - Premolars/Molars: Grind food
 - Chemical Digestion = Salivary Glands
 - Amylase: Enzyme → Carbohydrates

2) Esophagus conveys food to stomach
 - Peristalsis: Rhythmic contraction of smooth muscle; propels food
 - Bolus: Compacted food

3) Stomach:
 - Stores food (2 - 4 liters = 0.5 - 1 gallon)
 - Mechanically breaks down food (smooth muscle → churns)
 - Chemically breaks down food
 - Acidic environment (pH 1 - 3 → HCl secretion)
 - Pepsin: Enzyme → Proteins
 - Bleeding Ulcers
 - Chyme = Thick, acidic liquid
 - Water, Alcohol, Drugs (e.g. aspirin) absorbed through stomach wall

4) Small Intestine = Chemical digestion & absorption:
 - Longest portion of digestive system (~ 3.5 m)
 - Chemical Digestion:
 - Pancreas (pancreatic juice)
 - Bicarbonate ion = neutralizes chyme
 - Amylase = Enzyme → carbohydrates
 - Lipase = Enzyme → lipids
 - Proteases = Enzymes → proteins
 - Liver (bile)
 - Bile stored / concentrated in gallbladder
 - Bile salts = Assist in breakdown of fats
 - Emulsify fats (separate into small droplets)
 - Absorption:
 - Large surface area (2200 square feet)
 - Villi: Finger-like projections tube surface
 - Microvilli: Projections of cell membrane
 - Blood / lymph vessels (lacteals) run up villi (nutrient absorption)
 - Requires energy (ATP)
 - Movements:
 - Segmentation (mixing)
 - Peristalsis (propulsion)
Process of Human Digestion:
5) Large Intestine = absorption & elimination:
 • ~ 1.5 m long (colon & rectum):
 - Contain bacteria:
 - Produce Vitamin B complexes and Vitamin K
 - Absorbs water, vitamins, salts
 - Movement via peristalsis & defecation
 - Feces = Indigestible waste (semi-solid)

Control of Digestion:
1) Nervous System:
 • Food stimuli activates digestive system (e.g. smell, taste, stretch)
 - Secretes saliva (mouth), HCl (stomach)

2) Endocrine System:
 • Gastrin: Stimulates HCl secretion (stomach)
 • Secretin: Stimulates bicarbonate release (pancreas)
 • Cholecystokinin: Stimulates bile release (gallbladder)