Photoperiodism

- History
- Photoperiodism and flowering
- Flowering response
- Flower initiation
- Biological clock

History

- Demonstrated in 1920, Maryland mammoth tobacco mutant for flowering
- Daylength cause

Daylength

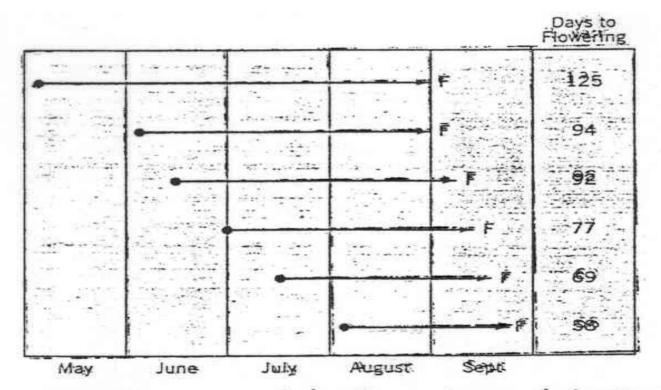
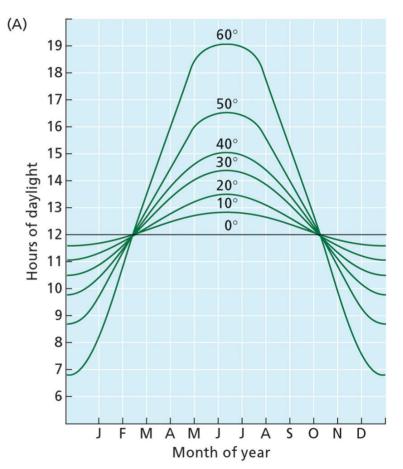
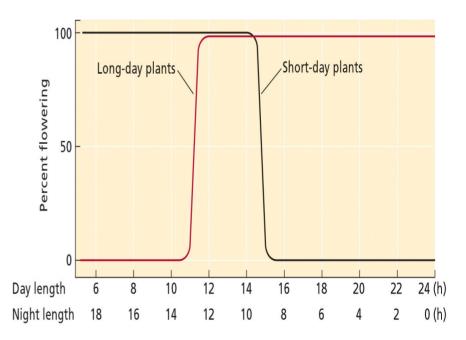



FIGURE 19.1 September soybeans. Soybeans (Glycine max, cv. Biloxi) sown over a three-month period all flower within a three-week period in September.

Photoperiodism and flowering


- Regulation of development by length of day
- Changes as you move from equator
- More predictable than climate: ie first frost

PLANT PHYSIOLOGY, Third Edition, Figure 24.16 (Part 1) © 2002 Sinauer Associates, Inc.

Long day and Short day plants

- Long day plants
- flower when daylength exceeds a critical duration
- short day plants
- flower when daylength is less than a critical duration

PLANT PHYSIOLOGY, Third Edition, Figure 24.18 © 2002 Sinauer Associates, Inc.

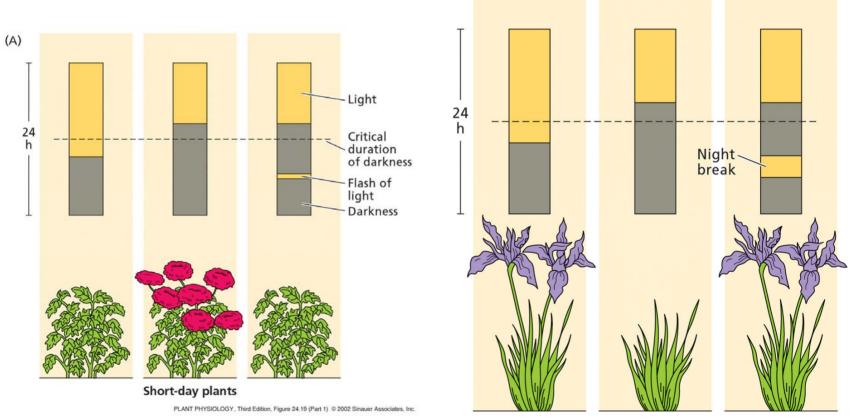
TABLE 20.1 Representative plants exhibiting the principal photoperiodic response types.

Short-Day Plants

Chenopodium rubrum Chrysanthemum sp. Cosmos sulphureus Euphorbia pulcherrima Glycine max Nicotiana tabacum Perilla crispa Pharbitis nil Xanthium strumarium red goosefoot chrysanthemum yellow cosmos poinsettia soybean tobacco (Maryland Mammoth) purple perilla Japanese morning glory cocklebur

Long-Day Plants

Anethum graveolens Beta vulgaris Hyoscyamus niger Lolium sp. Raphanus sativus Secale cereale Sinapis alba Spinacea oleracea Triticum aestivum dill Swiss chard black henbane rye grass radish spring rye white mustard spinach spring wheat


Day-Neutral Plants

Cucumis sativus Gompbrena globosa Heliantbus annuus Phaseolus vulgarus Pisum sativum Zea mays cucumber globe amaranth sunflower common bean garden pea corn

Dual Day length plants

- Long- Short day plants: long days followed by short days
- Kalanchoe
- Short Long day plants: sequence of short days followed by long days
- Trifolium (white clover)
- Day neutral plants:
- no seasonality
- depends on developmental status of plant

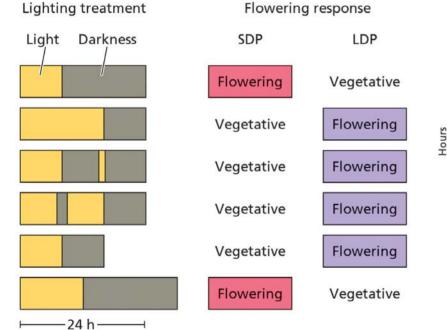
Patterns

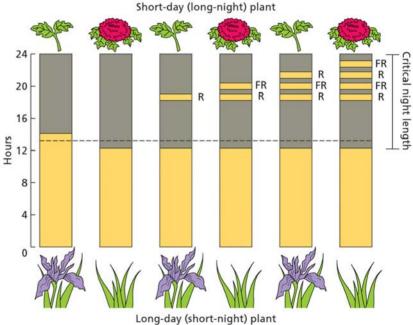
Long-day plants

PLANT PHYSIOLOGY, Third Edition, Figure 24.19 (Part 2) © 2002 Sinauer Associates, Inc.

Flowering response

- # of induction cycles
- critical daylength vs critical night length
- light interruption experiment
- red light/far red light
- photoreverisible
- phytochrome

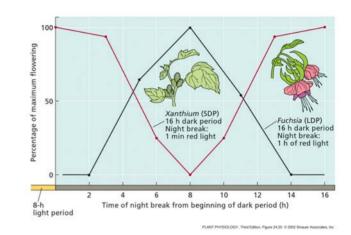

TABLE 24.1 Length of juvenile period in some woody plant species			
Species	Length of juvenile period		
Rose (<i>Rosa</i> [hybrid tea])	20–30 days		
Grape (Vitis spp.)	1 year		
Apple (Malus spp.)	4–8 years		
Citrus spp.	5-8 years		
English ivy (Hedera helix)	5-10 years		
Redwood (Sequoia sempervirens)	5–15 years		
Sycamore maple (Acer pseudoplatanus)	15-20 years		
English oak (Quercus robur)	25-30 years		
European beech (Fagus sylvatica)	30-40 years		

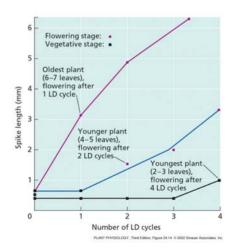

Source: Clark 1983.

PLANT PHYSIOLOGY, Third Edition, Table 24.1 @ 2002 Sinauer Associates, Inc.

Phytochrome response

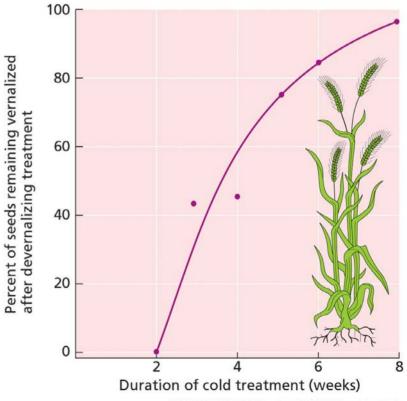
(B)

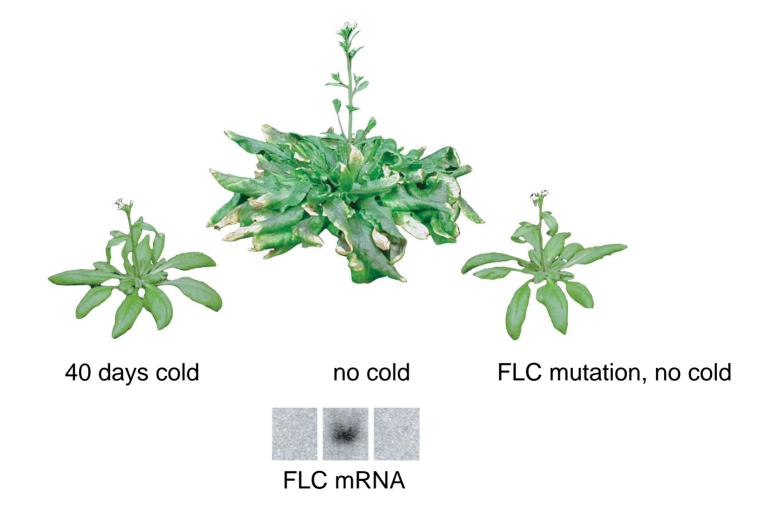


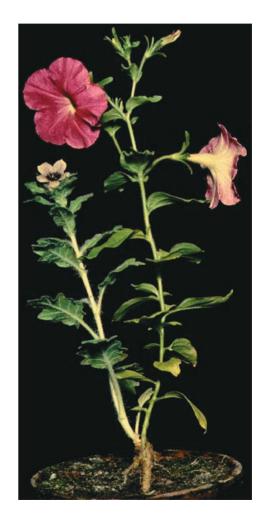

PLANT PHYSIOLOGY, Third Edition, Figure 24.22 © 2002 Sinauer Associates, Inc.

PLANT PHYSIOLOGY, Third Edition, Figure 24.19 (Part 3) @ 2002 Sinauer Associates, Inc.

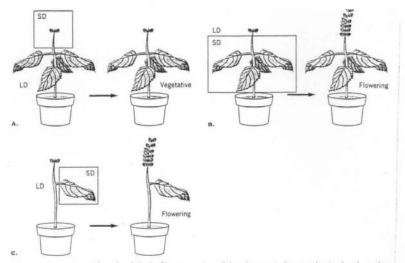
Variations


- ripeness to respond
- from cotyledon stage to 30 or 40 years of age
- qualitative vs quantitative: absolute or just longer or shorter days
- # of inductive cycles to flower: one to many
- mixed photoperiods: long to short, short to long

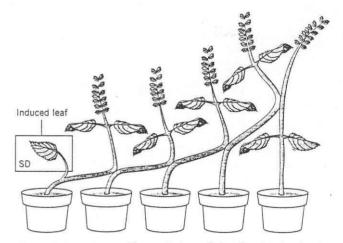

Vernalization


PLANT PHYSIOLOGY, Third Edition, Figure 24.26 @ 2002 Sinauer Associates, Inc.

Flowering locus gene



Flower initiation


- perception
- leaf data
- grafting experiments
- substance: "florigen",
- role of gibberellins in LD plants
- floral meristem changes

Perception

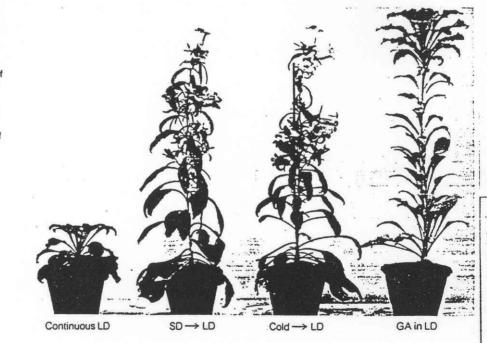
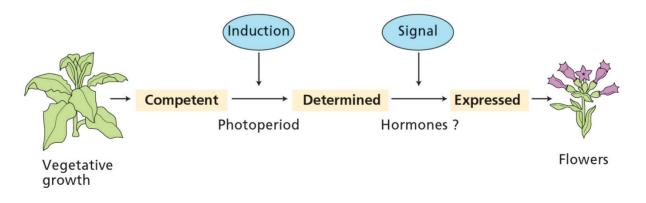

FIGURE 19.5 The role of the leaf in perception of the photoperiodic stimulus in the short-day plant *Perilla*, (A) Plants remain vegetative when the shoot apex is covered to provide short days and the leaves are maintained under long days. (B) Plants flower when the leaves are given short days but the meristem is maintained under long days. (C) Flowering will occur when only a single leaf is provided short days. (Based on the work of M. Chailakhyan, *Canadian Journal of Botany* 39:1817, 1961. Reprinted by permission.)

FIGURE 19.6 Transmission of the floral stimulus in grafted plants. Several plants are "approach" grafted and the terminal plant is induced to flower. All plants will flower, indicating that the floral stimulus has been transmitted from the single induced leaf through all of the plants.

Treatment

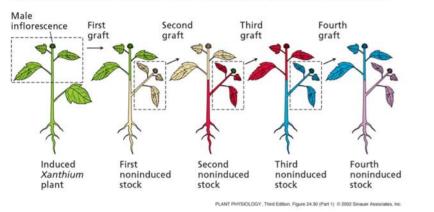
FIGURE 21.13. The control of flowering in the SDP Campanula medium. When grown in continuous long days, the plants grow as rosettes and the stem does not elongate. Eight weeks of short days followed by long days result in both elongation and flowering. The short days can be substituted by eight weeks of cold temperatures. Application of GA₃ results in stem elongation but not in flowering induction. (From Wellensiek, 1985.)

Floral Stimulus

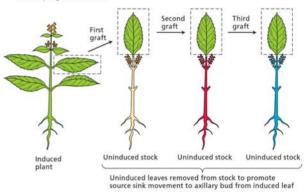

TABLE 24.2Transmissible factors regulate flowering.

Donor plants maintained under flower- inducing conditions	Photoperiod type ^{a,b}	Vegetative receptor plant induced to flower	Photoperiod type ^{a,b}
Helianthus annus	DNP in LD	H. tuberosus	SDP in LD
Nicotiana tabacum Delcrest	DNP in SD	N. sylvestris	LDP in SD
Nicotiana sylvestris	LDP in LD	<i>N. tabacum</i> Maryland Mammoth	SDP in LD
<i>Nicotiana tabacum</i> Maryland Mammoth	SDP in SD	N. sylvestris	LDP in SD

Note: The successful transfer of a flowering induction signal by grafting between plants of different photoperiodic response groups shows the existence of a transmissible floral hormone that is effective. ^{*a*}LDPs = Long-day plants; SDPs = Short-day plants; DNPs = Day-neutral plants. ^{*b*}LD, long days; SD, short days.

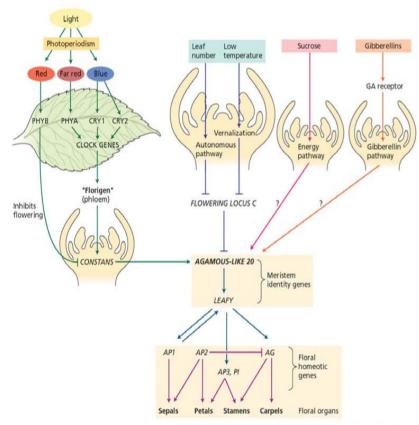

Steps to flowering

- Phytochrome
- Blue light receptor


PLANT PHYSIOLOGY, Third Edition, Figure 24.12 © 2002 Sinauer Associates, Inc.

Grafting experiments

(A) Indirect induction can be demonstrated in serial grafting experiments in Xanthium.


(B) Grafting of induced leaf to uninduced shoot causes flowering in multiple grafts in *Perilla*.

PLANT PHYSIOLOGY, Tried Edition, Figure 24.30 (Part 2) @ 2002 Sinauer Associates, Inc.

- Transmissible substance
- Source sink movement
- Possible in phloem?
- Substance?

Four Pathways

0h 18h 42h 5d

Shift from SD $\dots \rightarrow$ LD Increase in expression of AGL20

PLANT PHYSIOLOGY, Third Edition, Figure 24.32 © 2002 Sinauer Associates, Inc.