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History

Table 10.1. Evidence for the involvement of abscisic acid (AbA ) in plant response:
to water stress based on the similarity of responses to water stress and exogenous
AbA application (collated from Walton 1980 and Jones 1981a)

Discovered in Ash

Response Water stress
Short term
t re e S Otato t u e r Stomatal conductance Decrease Decrease + 4+ -
Photosynthesis Decrease Decrease + 4+ -

(Primarily a
stomatal effect)

L !
Membrane permeability Increase/decrease Increase/decrease +
eve S e C I n e W e n [on transport Increase/decrease Increase/decrease +
Long term: biochemical & ¢
physiological
d O rm an C b ro ke n Proline & betaine! accumulation Increase Increase + + :
Osmotic adaptation Yes Possibly -
Photosynthetic enzyme activity Decrease Decrease R 2
. . . Desiccation tpler:u'u:::2 [ncrease [ncrease + 3
G th h b t Wax production Increase’ Increase? -
rOW I n I I Or Long term: growth :
General growth inhibition Yes Yes + + + i
Cell division Decrease Decrease + 4 =
. Cell expansion 8 Decrease Decrease et 2
GA anta O n ISt Root growth Increase/decrease Increase/decrease + +
Root/shoot ratio Increase Increase*s ST &
Long term: morphology
Production of trichomes Increase Increase + +
Stomatal index Decrease Decrease + +
Tillering in grasses Decrease Slight decrease® +
Conversion from aquatic to
aerial leaf type Yes Yes + 4+
[nduction of dormancy. terminal
buds or perennation organs Yes Yes + +
Long term: reproductive
Flowering in annuals Often advanced Often advanced + +
Flower induction in perennials  I[nhibited [nhibited +
Pollen viability Decreased Decreased +
Seed set Decreased Decreased +

Extra references: |. Huber & Sankhla 1980: 2. Gaff 1980: 3. Baker 1974; 4. S. A.
Quarrie & H. G. Jones unpublished; 5. Watts er al. 1981.

The strength of correlation is indicated as ranging from weak (+) to strong
(++ +)



Chemistry

synthesized in
chloroplast/plastids

maevlonic acid pathway
cis-ABA active form
lunuluric acid in liverworts

photochemical production
from violaxanthin

Inactivated by ABA-
glucoside or O, oxidation
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Inactivation

Oxidation Conjugation
ABA inactivation by
ABA inactivation conjugation with
by oxidation l monosaccharides
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PLANT PHYSIOLOGY, Third Edition, Figure 23.2 (Part 3) © 2002 Sinauer Associates, Inc.



Transport

xylem/phloem
move 1o roots

synthesis in root caps -- basipetal
transport

move to all parts of plant
Increases during stress



Physiological action

e Stomatal closure

 Dormancy in
seeds/buds

e Precocious
germination




Seed dormancy

peak mid to late embryogenesis
dessication tolerance

accumulation of seed storage proteins
Inhibits precocious germination/vivipary



Five basic mechanisms of coat-
Imposed dormancy:

Prevention of water uptake.
Mechanical constraint.
nterference with gas exchange.
Retention of inhibitors

nhibitor production.




Environmental Factors Control the
Release from Seed Dormancy

o Afterripening
e Chilling
e Light



Stomatal closure

ABA weak acid

normal conditions enters
mesophyll cells

stress causes pH to rise in
xylem sap

ABA doesn't enter mesophyll
cell, ABA-

moves to guard cells

activates K+/ Cl- channels out
of guard cell

causes stomatal closure

evidence/data shown on pH
changes with application of
ABA

Leaf water potential
(MPa)

Stomatal resistance
(scm™ )

Water withheld

Water provided

Water potential decreases
as soil dries out
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Stomatal closure

e ABA Induces increase

In cytosolic Ca*?
concentration

e ABA reduces the size
of the stomatal
aperature

Cytostolic Ca?+
concentration after
addition of ABA




Light effects

« Blue light pulse opens BT
stomata v

e Addition of ABA
Inhibits acidification of
medium

'lv 5 uM ABA
e ABA inhibits plasma '
membrane H* - k
50 uM ABA

ATPase , , ,
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Increasing pH —»




Redistribution of ABA In Leaf
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(C) Root:shoot ratio
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CAM Induction
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Figure 4. Titratable organic acid levels in well-watered, nonstressed (control) plants, in

abscisic acid treated plants to close stomata, and in water-stressed plants during the light
period.



Signaling

ABA binds to receptor

Form Reactive oxygen
species

Activate Ca*2 channels

Intracellular Ca*? goes
up, inhibit K* channels

Membrane depolarization
activates K* channels out

Stomata close

ROS pathway

IP3, cADPR pathways




