Abscisic Acid

- History
- Chemistry
- Transport
- Physiological action

History

- Discovered in Ash trees/potato tuber
- levels declined when dormancy broken
- Growth inhibitor
- GA antagonist

Table 10.1. Evidence for the involvement of abscisic acid (AbA) in plant responses to water stress based on the similarity of responses to water stress and exogenous AbA application (collated from Walton 1980 and Jones 1981a)

Response	Water stress	AbA	
Short term			
Stomatal conductance	Decrease	Decrease	++-
Photosynthesis	Decrease	Decrease	++-
		(Primarily a stomatal effect)	
Membrane permeability	Increase/decrease	Increase/decrease	+
Ion transport	Increase/decrease	Increase/decrease	+
Long term: biochemical & physiological			
Proline & betaine ¹ accumulation	Increase	Increase	++
Osmotic adaptation	Yes	Possibly	+
Photosynthetic enzyme activity	Decrease	Decrease	+
Desiccation tolerance ²	Increase	Increase	+
Wax production	Increase ³	Increase ⁴	+
Long term: growth			
General growth inhibition	Yes	Yes	+ + +
Cell division	Decrease	Decrease	+ + +
Cell expansion ,	Decrease	Decrease	+ + +
Root growth	Increase/decrease	Increase/decrease	++
Root/shoot ratio	Increase	Increase ^{4.5}	+ +
ong term: morphology			
Production of trichomes	Increase	Increase	+ $+$
Stomatal index	Decrease	Decrease	+ $+$
Tillering in grasses	Decrease	Slight decrease ⁴	+
Conversion from aquatic to			
aerial leaf type	Yes	Yes	++
Induction of dormancy, terminal			
buds or perennation organs	Yes	Yes	+ +
ong term: reproductive			
Flowering in annuals	Often advanced	Often advanced	+ +
Flower induction in perennials	Inhibited	Inhibited	+
Pollen viability	Decreased	Decreased	+
Seed set	Decreased	Decreased	+

Extra references: I. Huber & Sankhla 1980; 2. Gaff 1980; 3. Baker 1974; 4. S. A. Quarrie & H. G. Jones unpublished; 5. Watts et al. 1981.

The strength of correlation is indicated as ranging from weak (+) to strong (+++)

Chemistry

- synthesized in chloroplast/plastids
- maevlonic acid pathway
- cis-ABA active form
- Iunuluric acid in liverworts
- photochemical production from violaxanthin
- inactivated by ABAglucoside or O₂ oxidation

Inactivation

PLANT PHYSIOLOGY, Third Edition, Figure 23.2 (Part 3) © 2002 Sinauer Associates, Inc.

Transport

- xylem/phloem
- move to roots
- synthesis in root caps -- basipetal transport
- move to all parts of plant
- increases during stress

Physiological action

- Stomatal closure
- Dormancy in seeds/buds
- Precocious germination

Seed dormancy

- peak mid to late embryogenesis
- dessication tolerance
- accumulation of seed storage proteins
- inhibits precocious germination/vivipary

Five basic mechanisms of coatimposed dormancy:

- Prevention of water uptake.
- Mechanical constraint.
- Interference with gas exchange.
- Retention of inhibitors
- Inhibitor production.

Environmental Factors Control the Release from Seed Dormancy

- Afterripening
- Chilling
- Light

Stomatal closure

- ABA weak acid
- normal conditions enters mesophyll cells
- stress causes pH to rise in xylem sap
- ABA doesn't enter mesophyll cell, ABA-
- moves to guard cells
- activates K+/ CI- channels out of guard cell
- causes stomatal closure
- evidence/data shown on pH changes with application of ABA

PLANT PHYSIOLOGY, Third Edition, Figure 23.5 © 2002 Sinauer Associates, Inc.

Stomatal closure

- ABA induces increase in cytosolic Ca⁺² concentration
- ABA reduces the size of the stomatal aperature

Light effects

- Blue light pulse opens stomata
- Addition of ABA inhibits acidification of medium
- ABA inhibits plasma membrane H⁺ -ATPase

Redistribution of ABA in Leaf

PLANT PHYSIOLOGY, Third Edition, Figure 23.4 © 2002 Sinauer Associates, Inc.

Water Potential

(C) Root:shoot ratio

PLANT PHYSIOLOGY, Third Edition, Figure 23.6 (Part 2) © 2002 Sinauer Associates, Inc.

CAM induction

Figure 4. Titratable organic acid levels in well-watered, nonstressed (control) plants, in abscisic acid treated plants to close stomata, and in water-stressed plants during the light period.

Signaling

- ABA binds to receptor
- Form Reactive oxygen species
- Activate Ca⁺² channels
- Intracellular Ca⁺² goes up, inhibit K⁺ channels
- Membrane depolarization activates K⁺ channels out
- Stomata close

