Polygenic and Multifactoral Traits

- Polygenic inheritance
 Continuous variation
 Additive alleles
 Calculating the number of genes
- Heritability
 Statistical tools: Mean, variance
 Broad sense heritability
 Narrow sense heritability
 Twin Studies and concordance

polygenic of quantitative infernance, is additive because it is controlled by two or more genes, and each allele adds a small but equal amount to the phenotype. The continuous distribution of phenotypes in polygenic inheritance has several distinguishing characteristics:

- · Traits are usually quantified by measurement rather than by counting.
- Two or more genes contribute to the phenotype. Each gene contributes in an additive way to the phenotype. The effect of individual alleles may be small, and some alleles may make no contribution.

▶ FIGURE 5.2 A bell-shaped or "normal" curve shows the distribution of phenotypes for traits controlled by two or more genes. In a normal curve, few individuals are at the extremes of the phenotype, and most individuals are clustered around the average value. In this case, the phenotype is height measured in a population of human males.

Continuous variation

- Kolreuter's cross
- Dwarf x tall tobacco
- F1 intermediate
- F2 intermediate, normal distribution

Multiple gene hypothesis

- East's cross of Nicotiana with different corolla length
- Indicates Mendelian segregation of different phenotypic classes
- Took subsets of F_2 and crossed.

Multiple factor hypothesis

- Characters quantified
- Two or more genes
- Additive alleles
- Contribute a constant amount
- Non-additive add nothing
- All alleles add equally

Polygenic inheritance

- 2 or more genes
- Show continuous variation vs discontinuous
- Additive component
- Distinct phenotypic classes
- Quantitative traits: size, weight, height, IQ

Polygenic inheritance

Skin color

Additive Model

- (1/4)ⁿ= ratio of f₂ individuals showing extreme phenotype
- n = (2n +1) phenotypic classes

Regression to the mean

- Tendency of offspring of parents with extreme differences in phenotype to exhibit a phenotype that is average of the two parental phenotypes
- Dominant and additive effects

FIGURE 5.7 A model for inheritance of height in the Potsdam Guards. In this example, the guards and their mates represent a subset of individuals in a population in which height can range from 5 ft. 9 in. (aabbcc) to 7 ft. 3 in. (AABBCC) (a) Gametes produced by a 6 ft. 9 in. male and a 6 ft, 3 in, female, (b) Punnett square showing the 16 genotypic and 5 phenotypic combinations that result from fertilization of all combinations of gametes. The genotypes resulting in children who are as tall or taller than their father are noted. Most of the children will have a height intermediate to their parents, showing regression to a mean height

P ₁ :		AaBbC 6ft 9in. Pot Guarc	rC × sdam I	<i>AaBbcc</i> 6ft 3in. femi	
Types of	gametes:	ABC (ABC (AI	
a)	5 iametes	aBC	abC	(aBc) (al	
Gametes	ABC	AbC AABbCc	aBC	abC	
ABc	7 ft	6 ft 9 in.	6 ft 9 in.	6 ft 9 in.	
ABc Abc	AABbCc 7 ft AABbCc 6 ft 9 in.	6 ft 9 in. AAbbCc 6 ft 6 in.	AaBbCc 6 ft 9 in. AaBbCc 6 ft 6 in.	AabbCc 6 ft 9 in. AabbCc 6 ft 3 in.	
ABc Abc aBc	AABbCc 6 ft 9 in. AaBBCc 6 ft 9 in.	6 ft 9 in. AAbbCc 6 ft 6 in. AaBbCc 6 ft 6 in.	AaBbCc 6 ft 9 in. AaBbCc 6 ft 6 in. aaBBCc 6 ft 6 in.	AabbCc 6 ft 9 in. AabbCc 6 ft 3 in. aaBbCc 6 ft 3 in.	

Threshold effects

- Some individuals show affected or unaffected phenotypes
- Predisposition is caused by a number of genes in an additive way
- Will develop the genetic disorder if exposed to proper environmental conditions.

ititatively the phenotype's ndividual, the question as see that if the question is to a phenotype.

ultifactorial Traits

l the environment can be ractions do occur. Some 1 of phenotypes; individsuch as clubfoot or cleft FIGURE 5.9 A model to explain the discontinuous distribution of some multifactorial traits. In this model, liability for a genetic disorder is distributed among individuals in a normal curve. This liability is caused by a number of genes, each acting additively. Only those individuals who have a genetic liability above a certain threshold are affected if exposed to certain environmental conditions.

Familial Risks

- First degree: Parentchild share ½ genes
- Second degree: grandfather: grandchild share ¼ genes
- Third degree share 1/8 genes

	Risk Relative to General Population				
Multifactorial Trait	MZ Twins	First-Degree Relatives	Second-Degree Relatives	Third-Degree Relatives	
Club foot	300×	25×	5×	2×	
Cleft lip	400×	40×	7×	2A 3V	
Congenital hip dislocation (females only)	200×	25×	3×	2×	
Congenital pyloric stenosis (males only)	80×	10×	5×	1.5×	

Statistical Analysis

- Mean (X) = $\sum X_i/n$
- Variance $(s^2) = (\sum X_i X)^2/n-1$
- Standard deviation (s) = $\sqrt{s^2}$

Broad-sense Heritabilty

- H² = proportion of total variance caused by genetic variance
- $H^2 = 1.0$, all genetic
- H² = 0 all variation due to environment

- Vp= phenotypic var
- Vg= genetic var
- V_E= environmental var
- Vp=Vg + V_E
- H²= Vg/Vp

Twin studies

Table 5.3 Concordance Values in Monozygotic (MZ) and Dizygotic (DZ) Twins

	Concordanc	e Values (%)
Trait	MZ	DZ
Blood types	100	66
Eye color	99	28
Mental retardation	97	37
Hair color	89	22
Down syndrome	89	7
Handedness (left or right)	79	77
Epilepsy	72	15
Diabetes	65	18
Tuberculosis	56	22
Cleft lip	42	5

% Overweight	% Concordant at Military Induction		% Concordant 25 Years Later	
	MZ	DZ	MZ	DZ
15	61	31	68	49
20	57	27	60	40
25	46	24	54	26
30	51	19	47	16
40	44	0	36	6

Note: From A twin study of human obesity, by A. J. Stunkard, T. T. Foch, and Z. Hrubec, (1986). JAMA, 256, 51-54.

Heritability

Table 5.2 Correlations Between Relatives for Total Ridge Count (TRC)				
Relationship	Number of Pairs	Observed Correlation Coefficient	Expected Correlation Coefficient Between Relatives	Heritability
Mother-child	405	0.48 ± 0.04	0.50	nemability
Father-child	405	0.49 + 0.04	0.30	0.96
Husband-wife	200	0.49 ± 0.04	0.50	0.98
C. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	200	0.05 ± 0.07	0.00	-
Sibling-sibling	642	0.50 ± 0.04	0.50	1.0
Monozygotic twins	80	0.95 + 0.01	0.50	1.0
Dimensio surta		0.95 ± 0.01	1.00	0.95
Dizygoue twins	92	0.49 ± 0.08	0.50	0.98

Note: From Quantitative genetics of fingerprint patterns, by S. B. Holt, (1961). Br. Med. Bull., 17, 247-250.

(from Several Studies)			
Condition	Heritability		
Obesity in children	0.77-0.88		
Obesity in adults (weight at age 45)	0.64		
Obesity in adults (body mass index at age 20)	0.80		
Obesity in adults (weight at induction into armed forces)	0.77		
Obesity in twins reared together or apart Men Women	0.70 0.66		

Table 55 11 1 11

Survey of traits

FIGURE 5.24 A graphical

representation of correlations in IQ measurements in different sets of individuals. The expected correlation coefficients are determined by the degree of genetic relatedness in each set of individuals. The vertical line represents the median correlation coefficient in each case.

Pairs studied Nonbiological sibling pairs (Adopted/natural pairings) Nonbiological sibling pairs (Adopted/adopted pairings) Foster parent-child Single parent-offspring reared together Siblings reared apart Siblings reared together Dizygotic twins, opposite sex Dizygotic twins, same sex Monozygotic twins reared apart

population. Heritability differences between two populations cannot be compa because heritability measures only variation within a population at the time of m surement and cannot be used to estimate genetic variation between populations other words, we cannot use heritability differences between groups to conclude 1 there are genetic differences between those groups.

It is quite evident that both genetic and environmental factors make imporcontributions to intelligence. Clearly, the relative amount each contributes canno

Group	Trait	Brief description
Congenital heart defects	Atrial septal defects Coarctation of aorta Patent ductus arteriosis Putmonary stenosis Translocated great arterios Ventricular exettal deforts	Hole in the septum of the atrium Narrowing of the aorta Failure of duct closure between the aorta and pulmonary arteries Narrowing of the pulmonary artery Exchange position of the two major arteries Hole in the septum separating the ventricles
Coronary heart disease	Hypercholesterolemia Hypertriglyceridemia Combined hyperlipidemia Arteriosclerosis Essential hypertension	High blood levels of cholesterol High blood levels of triglycerides High blood lipid levels Hardening of the coronary arteries High blood pressure
Diabetes	Maturity onsetnoninsulin dependent Juvenile onsetinsulin dependent (HLA-, DR3-, and DR4-associated)	Metabolic carbohydrate disorder Metabolic carbohydrate disorder
Head, feet, mouth, eyes, and ears	Hydrocephaly (one type) Club toot Cleft lip Cleft palate Cleft lip and palate Stuttering Strabismus Profound deafness (some cases)	Water on the brain Feet turned in at birth Incomplete formation of the lip (see fig. 9.2) Incomplete formation of the root of the mouth See above Speech delay in articulating letters and words Rapid movement of the eyes Loss of hearing
Joints	Congenital hip Rheumatoid arthritis	Dislocation of hip from birth Swelling and stiffening of joints
Mental state	Alzheimer's disease Manic depressive psychosis Nonspecific mental retardation	Mental disorientation Severe alteration of moods Other than single gene, chromosome or environmental agent Split personalities
	Lucus enthematosus	Disease of the connective tissue
Skin and muscle Spine	Anencephaly Anencephaly Ankylosing spondylitis (HLA-B27 haplotype) Meningomyelocele Scoliosis	Absence of complete brain Immobility of the vertebrae Open spine Curvature of the spine
Stomach, colon, kidney	Pyloric stenosis Crohn's disease Peptic ulcer Hirschsprung's disease (megacolon)	Narrow opening from stomach to intestine Irritation of the ileum Ulceration of a mucous membrane Absence of innervation of distal colon and rectum
	Familial idiopathic nephrotic syndrome	Massive swelling due to kidney disease