Polygenic and Multifactoral Traits

- Polygenic inheritance

Continuous variation
Additive alleles
Calculating the number of genes

- Heritability

Statistical tools: Mean, variance Broad sense heritability Narrow sense heritability Twin Studies and concordance

Continuous variation

- Kolreuter's cross
- Dwarf x tall tobacco
- F1 intermediate
- F2 intermediate, normal distribution

Multiple gene hypothesis

- East's cross of

Nicotiana with different corolla length

- Indicates Mendelian segregation of different phenotypic classes
- Took subsets of F_{2} and crossed.

Multiple factor hypothesis

- Characters quantified
- Two or more genes
- Additive alleles
- Contribute a constant amount
- Non-additive add nothing
- All alleles add equally

Polygenic inheritance

- 2 or more genes
- Show continuous variation vs discontinuous
- Additive component
- Distinct phenotypic classes
- Quantitative traits: size, weight, height,IQ

Polygenic inheritance

Skin color

2 loci

D FIGURE 5.3 Skin color is a polygenic trait controlled by three or four genes, producing a wide range of phenotypes. Environmental factors

Additive Model

- $(1 / 4)^{\mathrm{n}}=$ ratio of f_{2} individuals showing extreme phenotype
- $\mathrm{n}=(2 \mathrm{n}+1)$ phenotypic classes

Regression to the mean

- Tendency of offspring of parents with extreme differences in phenotype to exhibit a phenotype that is average of the two parental phenotypes
- Dominant and additive effects

D FIGURE 5.7 A model for
inheritance of height in the Potsdam Guards. In this example, the guards and their mates represent a subset of individuals in a population in which height can range from 5 ft .9 in .
(aabbcc) to 7 ft .3 in . (AABBCC).
(a) Gametes produced by a 6 ft .9 in .
male and a 6 ft .3 in . female. (b)
Punnett square showing the 16
genotypic and 5 phenotypic
combinations that result from
fertilization of all combinations of
gametes. The genotypes resulting in
children who are as tall or taller than
their father are noted. Most of the
children will have a height
intermediate to their parents,
intermediate to their parents, showing
regression to a mean height.

Threshold effects

- Some individuals show affected or unaffected phenotypes
- Predisposition is caused by a number of genes in an additive way
- Will develop the genetic disorder if exposed to proper environmental conditions.
ititatively the phenotype's adividual, the question as see that if the question is to a phenotype.
ultifactorial Traits
1 the environment can be ractions do occur. Some 1 of phenotypes; individ-
;uch as clubfoot or cleft

FIGURE 5.9 A model to explain the discontinuous distribution of some multifactorial traits. In this model, liability for a genetic disorder is distributed among individuals in a normal curve. This liability is caused by a number of genes, each acting additively. Only those individuals who have a genetic liability above a certain threshold are affected if exposed to certain environmental conditions.

Familial Risks

- First degree: Parentchild share $1 / 2$ genes
- Second degree: grandfather: grandchild share $1 / 4$ genes
- Third degree share 1/8 genes

Tadle 5.1 Familial Risks for Mutifiactorial Threshold Traits
Risk Relative to General Population

Multifactorial Trait	Risk Relative to General Population			
	$\begin{gathered} \text { MZ } \\ \text { Twins } \end{gathered}$	First-Degree Relatives	Second-Degree Relatives	Third-Degree Relatives
Club foot	300 x	25x	5x	2 x
Cleff lip	400x	40x	$7 \times$	$3 \times$
Congenital hip dislocation (females only)	200x	25x	3 x	2 x
Congenital pyloric stenosis (males only)	80x	10x	$5 \times$	$1.5 \times$

Statistical Analysis

- $\operatorname{Mean}(X)=\sum X_{i} / n$
- Variance $\left(s^{2}\right)=\left(\sum X_{i}-X\right)^{2} / n-1$
- Standard deviation $(\mathrm{s})=\sqrt{ } \mathrm{s}^{2}$

Broad-sense Heritabilty

- $\mathrm{H}^{2}=$ proportion of total variance caused by genetic variance
- $\mathrm{H}^{2}=1.0$, all genetic
- $\mathrm{H}^{2}=0$ all variation due to environment
- $\mathrm{V} p=$ phenotypic var
- $\mathrm{Vg}=$ genetic var
- $\mathrm{V}_{\mathrm{E}}=$ enviromental var
- $\mathrm{Vp}=\mathrm{Vg}+\mathrm{V}_{\mathrm{E}}$
- $\mathrm{H}^{2}=\mathrm{Vg} / \mathrm{Vp}$

Twin studies

Table 5.3	Concordance Values in Monozygotic (MZ) and Dizygotic (DZ) Twins	
Concordance Values (\%)		
Trait	MZ	
Blood types	100	66
Eye color	99	28
Mental retardation	97	37
Hair color	89	22
Down syndrome	89	7
Handedness (left or right)	79	77
Epilepsy	72	15
Diabetes	65	18
Tuberculosis	56	22
Cleft lip	42	5

Table 5.4 Concordance Values for Obesity in Twins

\% Overweight	\% Concordant at Military Induction		\% Concordant 25 Years Later	
	$\mathbf{M Z}$	DZ	$\mathbf{M Z}$	DZ
15	61	31	68	49
20	57	27	60	40
25	46	24	54	26
30	51	19	47	16
40	44	0	36	6

Note: From A twin study of buman obesity, by A. J. Stunkard, T. T. Foch, and Z. Hrubec, (1986). JAMA, 256, 51-54.

Heritability

Relationship	Number of Pairs	Observed Correlation Coefficient	Expected Correlation Coefficient Between Relatives	Heritability
Mother-child	405	0.48 ± 0.04	0.50	
Father-child	405	0.49 ± 0.04	0.50	0.96 0.98
Husband-wife	200	0.05 ± 0.07	0.00	0.98
Sibling-sibling	642	0.50 ± 0.04	0.50	
Monozygotic twins	80	0.95 ± 0.01	. 0	1.0
Dizygotic twins	92	0.49 ± 0.08	1.00	0.95
			0.50	0.98

Table 5.5	Heritability Estimates for Obesity in (from Several Studies)
Condition	Heritability
Obesity in children	$0.77-0.88$
Obesity in adults (weight at age 45)	0.64
Obesity in adults (body mass index at age 20)	0.80
Obesity in adults (weight at induction into armed forces)	0.77
Obesity in twins reared together or apart	0.70
Men	
Women	0.66

Survey of traits

FIGURE 5.24 A graphical epresentation of correlations in 1 nessurements in different sets of individuals. The expected correlation coefficients are determined by the egree of genetic relatedness in ea et of individuals. Thericaline
population. Heritability differences between two populations cannot be compa because heritability measures only variation within a population at the time of surement and cannot be used to estimate genetic variation between populations other words, we cannot use heritability differences between groups to conclude there are genetic differences between those groups.

It is quite evident that both genetic and environmental factors make impor ontributions to intelligence. Clearly, the relative amount each contributes canno
coefficient in each case.

Pairs studied

Nonbiological sibling pairs (Adopted/natural pairings) Nonbioogical sibling pairs (Adopted/adopted pairings)
Foter parent-child
Single parent-oflspring reared togethe
Single parent-offspring reared apart
Siblings reared apart
Siblings reared together
Dizygotic twins, opposite sex
Dizygotic twins. same sex
Monozygotic twins reared apan
Monozygotic twins reared together

Correlation coetficient

Expected
value
0.0
0.0
0.5
0.5
0.5
0.5
0.5
0.5

Group	Trait	Brief description
Congenital heart defects	Atrial septal defects Coarctation of aorta Patent ductus arteriosis Pulmonary stenosis Translocated great arteries Ventricular septal defects	Hole in the septum of the atrium Narrowing of the aorta Failure of duct closure between the aorta and pulmonary arteries Narrowing of the pulmonary artery Exchange position of the two major arteries Hole in the septum separating the ventricles
Coronary heart disease	Hypercholesterolemia Hypertriglyceridemia Combined hyperlipidemia Anteriosclerosis Essential hypertension	High blood levels of cholesterol High blood levels of triglycerides High blood lipid levels Hardening of the coronary arteries High blood pressure
Diabetes	Maturity onset-noninsulin dependent Juvenile onset-insulin dependent (HLA : DR3. and DR4 associated)	Metabolic carbohydrate disorder Motabolic carbohydrate disorder
Head, feet, mouth, oyes, and ears	Hydrocephaly (one type) Club toot Cleft lip Cleft palate Cleft lip and palate Stuttering Strabismus Protound deatness (some cases)	Water on the brain Feet turned in at birth incomplote formation of the lip (see fig. 9.2) incomplete formation of the roof of the mouth See above Speech delay in articulating letters and words Rapid movement of the eyes Loss of hearing
Joints	Congenital hip Rheumatoid arthritis	Distocation of hip from birth Swelling and stittening of joints
Mental state	Alzheimer's disease Manic depressive psychosis Nonspecific mental retardation Schizophrenis	Mental disorientation Severe alteration of moods Other than single gene, chromosome of environmental agent Split personalities
	Lupus erythematosus	Disease of the connective tissue
Spine	Anencephaly Ankylosing spondylitis (HL.A.B27 haplotype) Meningornyelocele Scoliosis	Absence of complete brain immobility of the vertebrae Open spine Curvature of the spine
Stomach, colon, kidney	Pylonic stenosis Crohn's discase Peptic ulcer Hirschsprung's disease (megacolon) Familial idiopathic nephrotic syndrome	Narrow opening from stomach to intestine Irritation of the ieum Uiceration of a mucous membrane Absence of innervation of distal colon and rectum Massive swelling due to kidney disease

