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1. Using Applications Effectively in the Classroom
ss. Their response

matics curriculum. One of the major reasons for the great increase in interest in discrete
ng mathematics in mathematics is its importance in solving practical problems. Conversely,
vhy its place in the practical problems have stimulated the development of discrete mathemat-

| ics. Applications — discrete or not — should play a major role in the

| mathematics classroom. They make the subject relevant. They underscore

| a reason for studying it. They are interesting.

| With regard to the role of applications in teaching discrete mathematics,
tainments, W. H. Free- I have developed some rules of thumb over the years, based on my experience
| with what students respond to and on the philosophy I have developed about

stem Technical Journal, the role of applications in mathematics. In my opinion, these rules of thumb

689-695. are appropriate at all grade levels, though most of my experience with them
Lt’tD:Ca}E;7lc"§5tlemporary has been at the college level.
€ =)
ence RI, 1991, pp. 170- Rules of Thumb
d “Selected Lectures in 1. The Relevance Rule: Choose applications that are relevant. There
are plenty of them.
wantitative Literacy, The 2. The Two Are Better Than One Rule: Never settle for one appli-

cation when two are available.
. The Why Do Things Twice Rule: Stress the fact that abstract

oplemento al v. 13, serie methods developed for dealing with one application are often useful
for another.

4. The Get Real Rule: Mention real uses of mathematics whenever
, NY 10027 possible.

5. The Frontiers Rule: Show the frontiers of the subject.
6. The Math Is Alive Rule: Use applications to show that mathe-
matics is a live subject, done by real people.
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106 FRED S. ROBERTS
7. The Motivate Rule: Let applications motivate theory: Then apply (Th
theory to applied problems. nicaj'"
8. The Don’t Be Scared Off Rule: Don't hesitate to talk about an s g;_
application because you don’t have a background in the subject. Most veigij
applications canl be explained from general knowledge. AT?
9. The Modeling Rule: Choose applications that involve model build- |
ing. Illustrate the simplifying assumptions in the model and iterate The
to more complicated (and more realistic) models. boof
In this paper, ! will illustrate these rules of ¢humb with three exam- wha
ples. In each case, 1 take one simple mathematical concept and give lots '

and similar examples in my college-

1 have used these
used them at all grade le

1 shall discuss are:

of applications of it.

level courses, but have also vels, including primary

grades. The three examples
a: The traveling salesman problem.
b: Graph coloring.
c: Eulerian chains and paths.
Almost all of the applications 1 mention here

ok, Roberts [31}. For some of them,
of these references are to ar

are discussed in more detail
in my bo 1 will provide additional
references, though many ticles that are more

technical in nature.
2. The Traveling Salesman Problem
I r

The traveling salesman problem (TSP), in its traditional Eormulatinn,'

is the following: There are locations. A galesperson must visit all of

them, in some order. There is & cost of traveling from location i to location |
What is the cheapest route? Most of those who have been exposed

to discrete mathematics have see this problem. They know it 18 difficult:

No one has found a good TSP algorithm, that is, a computer algorithm for
solving the TSP which 18 practical for very large 1 and there is strong
evidence that there is none. (The problem belongs to the class of problems
that {heoretical computer scientists call NP-complete.) Most people who
teach discrete mathematics mention the TSP. But you can use it muc

more effectively by going t0 the next step: Ghow how this problem arises 10

practice in many other forms.
Let me mention some of these other forms.

The Automated Teller Machine Problem. Your hank
has many ATM machines. Each day, & courier goes from
machine to machine to make collections, gather computer in-
formation, and so on. In what order should the machines
be visited? This problem arises in practice at many banks.
One of the earliest banks to use & TSP algorithm to solve it,
in the early days of ATM’s, was Qhawmut Bank in Boston.

is nowadays frequently referred to as the “traveling -salﬁspeﬂ‘aﬂ

e
INote that the TSP
to use the historical name.

problem”. 1 have chosen
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apply (This example is from Margaret Cozzens (personal commu- :
nication), who first developed it as an assignment for her un- :
out an dergraduate operations research class at Northeastern Uni- i
 Most versity, and assigned students to study the Shawmut Bank
ATM problem, with considerable success.)
t_bulld_ The Phone Booth Problem. Once a week, each phone |
iterate booth in a region must be visited, and the coins collected. In i
what order should that be done? i
exam- .
ive lots The Problem of Robots in an Automated Warehouse.
college- The warehouse of the future will have orders filled by a robot.
rimary Imagine a pharmaceutical warehouse with stacks of goods ar- ||
ranged in rows and columns. An order comes in for ten cases
of Tylenol, six cases of shampoo, eight cases of bandaids,
etc. Each is located by row, column, and height. In what
order should the robot fill the order? The robot needs to |
re detail be programmed to solve a TSP. In our programs in discrete ‘
ditional mathematics for high school and middle school teachers and
— for high school students at DIMACS (the Center for Discrete
Mathematics and Theoretical Computer Science), we some-
times take the students to see a Rutgers University Industrial
Engineering robot, which can be used to do exactly this. See i
ulation,! 185 Bl:
sit all‘ of A Problem of X-Ray Crystallography. In x-ray crystal-
 location lography, we must move a diffractometer through a sequence
exposed of prescribed angles. There is a cost in terms of time and set-
difficult: up for doing one move after another. How do we minimize
rithm for this cost? See [4].
is strong
problems Manufacturing. In many factories, there are a number of
ople who jobs that must be performed or processes that must be run.
> it much After running process 7, a certain setup cost is inferred before
n arises in we can run process j, a cost in terms of time or money or

labor of preparing the machinery for the next process. Some-
times this cost is minimal, for example simply amounting to
nk making minor adjistments, and sometimes it is major, for
“ example requiring complete cleaning of equipment or instal-

- lation of new equipment. In what order should the processes

e be run?

nes '.
ks. These applications illustrate some of my rules of thumb. They all illus- '
> it, trate the Relevance Rule (#1) and the Two Are Better Than One

on. Rule (#2). They also illustrate the Don’t Be Scared Off Rule (#8).

ou don’t have to know anything about x-ray crystallography to talk about
fhat application. Yet, I know teachers who are embarrassed to bring in

g salesperso?
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applications like this because they don't know what some words mean Or by zeal
can’t pronounce the words! What is a diffractometer? One of your students Ali\;e flieoff
might know, OF be willing to find out. The entire paper will illustrate these whose r ul¢
three rules of thumb, s0 1 will usually not explicitly mention those again. you Ls;:) esul
These examples also illustrate the Get Real Rule (#4) —it s especially .them lmehf"
nice to be able tO mention real companies (such as Shawmut Bank) that I ’f?:'tei'
use mathematical methods. 1 should also note that all of these problems tion ;nden-'!
are, in the abstract, the identical problem we have formulated for the TSP. ood L
Once we have developed mathematical tools for dealing with the TSP, these %om e:ami
same tools can be applied to all of these other practical problems. This tr irrl)u aﬂ“lc
illustrates the Why Do Things Twice Rule (#3)- There are two Ways : Zon% i tp
1 illustrate this rule. Sometimes, 1 formulate one version of 2 problem, e 51}11 9
translate it into mathematical language (with the students’ help), and then ducefl thaH:
develop mathematical methods needed for dealing with the problem. 1 then =h ea; f
formulate another practica\ problem, show how, in the abstract, it is the which I ﬂll&
same as the first, and then point out that little extra mathematical analysis is the Moti Q
needed. At other times, I will formulate a large number of practical problems of counti ‘;
first, and let the students observe how they are related by formulating them count ng

all in the same abstract language, of by guessing why or how they are related.
1 should point out that many of these problems in their current formu-
lation involve simplifying assumptions. For example, in the phone booth
problem, some telephone booths need to be visited more often than others, |
fill up faster; and in the manufacturing problem, some processes . A grap
cannot be run before others are completed. In the first round of modeling, ' by lines ol
these complications are ignored. The next round of modeling ghould try | that if two
to handle them. This is an Jlustration of the Modeling Rule (#9). By : number of!

since they

discussing simplifying assumptions, we teach our students to question as- ' Some ment
sumptions and hypotheses, train them to be more gkeptical about technical applicatiof
presentations and ultimately prepare them to be better decision makers. 1 few colors.
always try to involve my students in pinpointing oversimplifications in an colors. Wi
initial model for a problem. I also involve them in guggesting how to modify two vertict
an abstract model to take account of possible complications. problem of
Recently, a group of researchers at four institutions, Rutgers University get differes
AT&T Bell Labs, Bellcore, and Rice University, solved the largest TSP ever graph. Th
solved (up to that time). It had 3038 cities and arose from & practical into my cl
problem involving the most officient, order in which to drill 3038 holes ¥ 100 years {
make a circuit board (another THP a.pplication). (For information abo¥ and & histe
this, see [1, 41]) 1 like to mention this achievement, and tell my studen®® iolormg P
how a real problem was solved by real people who are at the same institutio® t}sle th_e m
as 1 am. This illustrates the Get Real Rule (#4), the Frontiers ule N ere is my
(#5), and the Math Is Alive Rule (46): Tt involves & real application i S(I)’II:lllcat,io%
is right at the frontiers of modern research, and it was done by real pEOPle' I ﬁne dof thp’
Students much prefer to see & real-world application O & make-believe on® exam tha
using “widgets.” They get turned on by realizing that they can get 10 k.le upOnPleS‘
frontiers of knowledge. They algo pay more attention to things that aré one = o
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by real people. I know one teacher who believes so strongly in the Math Is
Alive Rule (#6) that he brings in slides showing pictures of mathematicians
whose results he is talking about. Once you have seen a picture of a person,
you somehow pay more attention to that person’s results, and remember
them better by associating them with the picture.

I often use the TSP to introduce the idea of complexity of computa-
tion and to motivate an interest in counting and combinatorics. It is a
good example to illustrate why one needs to count the number of steps in a
computation before implementing it. (Consider the brute force approach of
trying all possible orders of the cities in a TSP with, say, 26 cities. Even on
a computer that could check one billion orders per second, it would take us
almost half a billion years to look at all possible orders.) Once I’ve intro-
duced the idea of counting the number of steps in a computation, I find it
much easier to interest students in methods of counting and combinatorics,
which I then relate back to complexity of computation. All of this illustrates
the Motivate Rule (#7). Students are much more interested in the rules

of counting if they see a real application that requires them to be able to
count.

3. Graph Coloring

A graph consists of a set of points or vertices, some of which are joined
by lines or edges. A very old idea is to color the vertices of a graph so
that if two vertices are joined by an edge, they get different colors. A large
number of those who teach discrete mathematics talk about graph coloring.
Some mention one application of graph coloring, the historically important
application of map coloring, where the goal is to color the map with as
few colors as possible, so long as countries sharing a border have different
colors. We model the countries of a map by vertices of a graph and join
two vertices by an edge if their countries have a common boundary. The
problem of coloring a map so that countries with a common boundary must
get different colors is the same as the problem of coloring the corresponding
graph. This is a very important historical example. I like bringing history
into my classes, especially when there is a very interesting history of over
100 years that also involves important contributions by non-mathematicians
and a historically important use of computers — the first solution to the map-
coloring problem used 1200 hours of computer time! That is why I like to
use the map coloring example. (For more on its history, see [2].) However,
there is much more to be said here, because graph coloring has many modern
applications which students find both interesting and exciting. I start with
Some of these examples before going back and giving the historical example.

find that students perk up and take notice from modern and relevant
®Xamples. Here are some applications, almost all of which are expanded
"Pon in my papers 33, 34].
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Meetings of Cominittees in & State Leg- been little mem;

Scheduling
problem is to assign meeting times SO that if better than and
C

islature. The

two committees have a member in common, they get, differ- to use the smh

ent meeting times. The solution is t0 color an appropriate reasonable di i»];.;

graph. To define a graph, we must say what its vertices and T numbers !

edges are. In this case, the vertices are the committees and There is & lap o
tices if their corresponding the subject ag

there is an edge hetween two Vver
lors are the

committees have a common member. Then the co

meeting times. 1t should be noted that this problem arises in
many places. One particular place of note is the New York Th? C
Gtate Assembly. (See (5] and [31] for more details.) This assign 8
{lustrates the Get Real Rule (#4). in;t_ters_.
o . ution i
wolve assigning final exam times — classes defined

Gimilar scheduling problems ir
with a common student must get different exam times. Gimilarly, in an ide-

alized school, students first sign up for classes and then classes are assigned
meeting times 80 that classes with a common student get different meeting
times. (This actually happens in some universities, at least for the schedul-
ing of graduate courses in small departments.) Both of these problems are,

in the abstract, the identical problem that we have just formulated for the
he TSP, once we have formulated the

state legislative committees. As with t _
first scheduling problem as an abstract mathematical problem and devel- T usually f(-'z

oped tools for dealing with that problem, we Can now “reduce” these new lems —— explai
scheduling problems to the old one, in the sense that in the abstract version, to colors. Afl
they are the same problem and so are amenable to solution using the same | and they willi
tools. This again lustrates the Why Do Things Twice Rule (#3)- ' can readily t&

1 usually give simple scheduling problems as examples, have the students problem. In i
translate them into graph problems, and have them try to find graph col- that can be fe

sually end up using a greedy algorithm for doing this — color It is word
olor only if no previuusly used color well as other

orings. We u

the vertices one at a time, using & new ¢

can be used. We then ask whether or not we have found a coloring, with variations of

the fewest pumber of colors. It is not hard t0 give examples where such considered wi
necessarily ju

does not work. 1 point out that graph coloring is again
h the TSP, there is no known “good” one has a smi
b the smallest number of colors, thus uses 1esé,
This is a place where one that we migk!:'

a greedy approach
known to be a difficult problem—as wit
algorithm for finding a graph coloring wit

and 1t 18 unlikely that there will ever be one.
can introduce different graph coloring algorithms and use them on practi' than on chan
ds developed for graph coloring problem? that we migl

cal problems. The abstract metho
that arise from one problem are use
Twice Rule (#3) has again been illustrated. It ig no surp
designed to solve scheduling problems is sometimes based on graph ¢ :
It might make a good exercise 10 have your students explore the goftwar® interesting g
that is used in your school, or to try to write their own programs. colorings, n_i'-.

Practical gcheduling problems involve many further compl are not diffic

ications, such p
» . . i 0O 1
as individuals’ preferences for when they are to be scheduled, or Cerv R modern 1
committees being required to meet after certain others. ho? ule (#9) .

ful for others. The Why Do Thing$ the possibilif
rise that softwart channel oven
oloring: in cars. The

Also, there
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been little mention so far of what makes one schedule (one graph coloring)
better than another. This needs to be discussed as well. Is the goal only
to use the smallest number of colors? Or is it sometimes good to have a
reasonable distribution of colors, i.e., to use each color approximately the
same number of times? All of this illustrates the Modeling Rule (#9).
There is a large literature on scheduling theory: several good references on
the subject are the books [3, 27, 36].

The Channel Assignment Problem. The problem is to
assign channels to radio and television transmitters; trans-
mitters that interfere must get different channels. The so-
lution is to color an appropriate graph. The graph can be
defined by letting the vertices be the transmitters and let-
ting an edge correspond to interference. Then, the colors
are the channels. Graph coloring methods for solving the
channel assignment problem are widely used at such agen-
cies as the Federal Communications Commission, the Na-
tional Telecommunications and Information Administration,
and NATO (the Get Real Rule (#4)). See [12, 6, 34]

I usually formulate one or two practical problems as graph coloring prob-
lems — explaining what to use for vertices and edges and what corresponds
to colors. After an example or two, however, I ask the students to help,
and they willingly chime in. After hearing about scheduling problems, they
can readily translate the channel assignment problem into a graph coloring
problem. Indeed, they are eager to think of other problems familiar to them
that can be formulated as graph coloring problems.

It is worth mentioning that practical channel assignment problems as
well as other applied problems have given rise to a variety of interesting
variations of the ordinary concepts of graph coloring. So far, we have not
considered what makes one channel assignment better than another. It is not
necessarily just that one uses fewer channels than the other; it might be that
one has a smaller separation between largest and smallest channel used and
thus uses less of the available “spectrum.” We have not considered the fact
that we might have further restrictions on channels that are closer together
than on channels that are further apart but still interfere, or more generally,
that we might have different levels of interference. We have not considered
the possibility that transmitters might be assigned more than one possible
channel over which to transmit, as is the case for mobile radio telephones
%n cars. The removal of each of these simplifying assumptions leads to an
interesting generalization of graph coloring. Some of them are called 7-
colorings, n-tuple colorings, and interval colorings [33]. Such generalizations
are not difficult to explain to students, and many of them are at the forefront
of modern research in graph theory. This again illustrates the Modeling
Rule (#9) and the Frontiers Rule (#5).
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There 18 another important point. Rea.l—woﬂd channel a_asignment prob- the campus of i
ands of vertices. 1618 yery hard 0 find the “hest” phasings than

lems use graphs with thous

of a number of definitions of best. gometimes, We ghould rience, they wi
t (

solution under any
gettle for & solution that can be found in 2 reasonable amount of HMe even if to implement {
it is not the est, This 18 & good place to bring 11 the idea of a.pproximation, 44, the Get I
and perhaps to mention «heuristic” algorithms that have heen de\reloped by It shouldk
real people at real places such a8 at NATO (the Math Is Alive Rule (#6))- facilities, Such‘%
Garbage Collection Problem. Garbage trucks follow €€~ some of them.
tain routes in collecting garbage- The problem is to assign use times) S0’
abstract, this

truck route to & day of the week so that if two
illustration of

cach garbage
routes visit & common 8ite, they are scheduled for different
same problemn
[

days. The solution is to color an appropriate graph. e
vertices of that graph are the routes in uestion and an edge tasks need tc
use the same

between WO routes means that they yigit a common site.
Do Things

The colors are the days. This particular problem arose from
Flee
are ¢f

ed garbage ¢ruck routing problem posed by

a more complicab
the New York City Department of Sanitation. That pro

Jem involves choices of routes as well. This Jlustrates the to a}

Get Real Rule (#4) and the Modeling Rule (#9)- See cle. 1
(28, 29, 37). diffo
Traffic Light Phasing problem. We are putting in a nev ; appr
traffic light at & traffic intersection. We need t0 assign a green an €
light time to each stream of traffic through the intersection ’ ‘ sam(
so that two streams of graffic that interfere get different green Il amp
light times The solution is to color an appropriate graph. ] som
The vertices of that graph are the traffic gtreams, an edge ' It sl
means inteference, and the colors are the green light times. \ at 1
The idea of using graph coloring for phasing new traffic lights See
was first proposed in an article in @ ttansportation joumal, The Fl
Transportetion Seience [38)- (See also [28].) makes one
In dealing with the Traffic Light Phasing Problem, Wé have omitted rtr(l)oiz stpacej.
any discussion of what makes one green light assignment petter than ab” grap}(i :;g’l
other. Also, We are not paying attention to the duration of the green Jight Alustrat 01_-_
times, and the fact that one traffic stream might require & longer green ight I hajet{
i ordinary applicati '
1

other. These complications lead to geueralmations of
eralization known as interval color- the Two |

again {lustrated th very excit
.1t|h Coloring?”‘;

0, 21| 2 graph col
|‘

time than an
graph coloring, and in part.icu‘;ar the gen
‘« of current research interest. S0, We have

Rﬁycha.udhuﬂ (24, 25|, are based on linear programming methods 10 |
. Con : 5

the best (interval) graph colori
nd some local traffic int.ersect'mﬂs |

gorithms to my students, then let them fir _
to apply the algorithms tO- Margaret Cozzens (personal oommunicatioﬂ) OgyGWe!
al you

reports that when her

gtudents applied the algorithms to intersections ne
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the campus of Northeastern University, they found much better traffic light
phasings than those actually in use. To complete this really practical expe-
rience, they went and convinced the Boston department of transportation
to implement their solutions! This is a wonderful example of rule of thumb
#4, the Get Real Rule.

It should be noted that the same problem arises in scheduling other
facilities, such as a classroom, computer, etc. There are different users and
some of them interfere. We wish to assign green light times (permission-to-
use times) so that interfering users get different green light times. In the
abstract, this is the identical problem that we have already analyzed, an
illustration of the Why Do Things Twice Rule (#3). In addition, the
same problem arises in task assignment problems in the workplace. Different
tasks need to be assigned times, but some of them interfere because they

use the same workers or tools or resources, another illustration of the Why
Do Things Twice Rule (#3).

Fleet Maintenance Problem. Vehicles (cars, planes, ships)
are coming into a facility for regular maintenance according
to a fixed schedule. We wish to assign a space to each vehi-
cle. If two vehicles are there at the same time, they must get
different spaces. The solution to this problem is to color an
appropriate graph. Its vertices are the vehicles and there is
an edge between two vehicles if they are in the facility at the
same time. The colors are the spaces. (This is the first ex-
ample I have given where the colors are not times or days or
something like that. Students usually see this fairly quickly.)
It should be remarked that this problem was first worked on
at IBM for ship maintenance (the Get Real Rule (#4)).
See [11, 19, 30].

The Fleet Maintenance Problem again has its complications: What
makes one assignment better than another? What if one vehicle requires
more space than another? Physically, do the spaces correspond to points or
to rectangles or to circles? Each complication leads to a new variation of
graph coloring, much as in the channel assignment problem. Here again we
illustrate the Modeling Rule (#9) and the Frontiers Rule (#5).

I have often given a talk to high school audiences that describes the many
applications I have given in this section. (It certainly is an illustration of
the Two Are Better Than One Rule (#2)!) One of these talks led to a
Very exciting question by one of the students: “Are there careers in graph
coloring?” I think I made my point that day! (No, there are not careers in
&raph coloring. Yes, there are careers in applying mathematics.)

4. Eulerian Chains

Given a graph, a chain (or walk or path, depending on what terminol-
°8Y you use) arises if we follow the edges from vertex to vertex; an eulerian
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every edge exactly once. An culerian closed chain

is an eulerian chain that begins and ends in the same place. Many of those
i the problems of finding eulerian

who teach discrete mathematics mentio
chains and culerian closed chains. Some people talk about their history,

by describing the famous problem of the Konigsberg bridges, which was
solved by the mathematician I,eonhard Euler in 1736 and gave rise to the
gubject of graph theory.: (See (2], and see the article by Newman [18] in Sci-
entific American, and the accompanying translat i

ion of the original memoir
by Euler [10].) Some people even g0 beyond this, to describe the following
problem (though not always connectin

g it to eulerian chains).
The “Chinese Postman Problem”. A mail carrier walk-
ing a route must hit every street in the neighborhood and use
the smallest amount of time. What route should the carrier
take? This problem was first analyzed using graph theoret-
ical methods by 2 real postman in China, Guan Meigu (the
Get Real Rule (#4) and the Math Is Alive Rule (#6).)
Tt is not exactly the same problem as that of finding an euler-
;an closed chain, since the mail carrier can walk down a street
a second time. However, the eulerian chain problem enters in
a critical way into the solution: If there is an eulerian closed
chain, this gives the solution. 1f not, we simply have to find
the smallest number of edges to COPY 50 that in the resulting
graph there is an eulerian closed chain. See (15, 17, 31

chain is & chain that uses

While some people teaching disc
the Chinese Postman Problem, it is
by noting that the exact same problem aris
removal. Certain streets in a city have to be swept or
to do this in the least amount of time [
an illustration of the Why Do Things Twice Ru
out, these problems have interesting com
to be swept every day; there are one-way streets; it ta

go down a street while sweeping it

just passing through. These complications can be handle

to interesting variations of t
exercises for students [38]. Here agail, we he

Rule (#9)-
Here is another problem that is really the same:
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cified vertex locations) by com-
dge, we need to pause the com-
T the paper. We draw lots of
1d like to design a way of
possible. This is again

Automated Graph
draw a graph (with pre-spe
puter. When we repeat an €
puter and raise the plotter pen ¢
copies of the same graph and so wou
drawing it which uses as little time as

rete mathematics go as far as mentioning
<o much better to g0 further, for instance
es in street sweeping and in snow
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38, 16, 29, 31]. Again, W have
le (#3). As it turns
plications: Only some streets need
kes much longer 0
than it does to g0 down it when one is
d, and they lead
he Chinese Postman Problem and wonderfu
e illustrated the Modeling

Tk
stance
cerned
to the
also C¢
ory of
in the
for fir
decon
1965
soon
euleri
class
of the
11.4.4

A:
ular |
discre
the 1
Proje
For r
to giv
putaf
exarr
map)
comk
ment
nityf;
Dartﬁ
1ems%
amp,
scier

(the!

use




ng

ce

ou
ish
e
rns
sed
to

5 18
ead
rful
ing

THE ROLE OF APPLICATIONS IN TEACHING DISCRETE MATHEMATICS 115

the Chinese Postman Problem. It has modern practical ap-
plications in chip design at IBM, drawing circuit diagrams,
electrical and water networks for cities (it has been widely
used in Bonn, Germany, for example), control of machines
for producing lithographic masks, and so on. See [13, 26].
Again, we have illustrated the Why Do Things Twice
Rule (#3) and the Get Real Rule (#4).)

There are other, more subtle applications of eulerian chains. For in-
stance, eulerian chains arise in a telecommunications problem which is con-
cerned with how to tell the position of a rotating roof antenna without going
to the roof. The solution involves finding so-called deBruijn diagrams, which
also can be connected to the design of computing machines through the the-
ory of shift register sequences. See [31] for a discussion.

How many people know that eulerian chains have played a crucial role
in the history of molecular biology? They were used in early algorithms
for finding an RNA chain given fragments of it that were produced from
decomposition by various enzymes. The first RNA chain was determined in
1965 by R.W. Holley and his co-workers at Cornell, using a method that
soon was improved using eulerian chains and paths. The specific use of
eulerian chains is a bit complicated. However, I can build up to it in several
class periods, which involve some rather simple but beautiful applications
of the basic counting rules of combinatorics. (See [31], Sections 2.13 and
11.4.4.)

After I describe, or at least mention, the use of eulerian chains in molec-
ular biology, I usually lead into a discussion of the many applications of
discrete mathematics to modern molecular biology. In particular, I mention
the importance of graph theory and combinatorics in the Human Genome
Project, the project of mapping and sequencing the entire human genome.
For more on this subject, see for example [7, 14, 23, 32, 39, 40]. I like
to give specific problems here that have come out of recent research in com-
putational biology. Some of these involve eulerian chains and paths (as for
example in connection with the “double digest problem” in DNA physical
mapping [22]). Others involve a variety of questions in graph theory and
combinatorics. This illustrates, once again, the Frontiers Rule (#5). I also
mention the increasing collaboration between the biological sciences commu-
nity and the mathematical sciences community and the realization on the
part of biological scientists that many of their problems are basically prob-
lems that are amenable to formulation using discrete mathematics. I give ex-

amples of the many collaborations between local mathematicians/computer
Scientists and local biological scientists that have come about in recent years
(the Math Is Alive Rule (#6)).

5. Concluding Remark

‘The main message of this paper, and the main reason that we wish to
Use applications in our courses, can be summed up as follows. There are so
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many exciting, relevant applications of discrete mathematics that if you are (21]
a good teacher, none of your students should ever again have to ask: What 22 Approl
N ]
is mathematics good for? | Pevan
Grapj
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