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Mathematical Modeling and Discrete Mathematics

Henry O. Pollak

1. What is Mathematical Modeling?

When people talk about the connection of mathematics with the rest
of the world, they use a number of phrases such as “applied mathemat-
ics”, “problem solving”, “word problems”, and “mathematical modeling”,
to name just a few. In order to define these more precisely, and to dif-
ferentiate among them, I should like to begin by describing the series of
activities which seem to take place when we try to use mathematics to ex-
amine something in the rest of the world. Some situations involving discrete
mathematics to which this analysis applies will be given later.

(1) The process begins with something outside of mathematics which
you would like to know or to do or to understand.
e The result is a question in the real world, well-defined enough
that you can recognize when you have made progress on it.
(2) You next select some important objects in this situation outside of
mathematics, and relationships among them.
e The result is the identification of some key concepts in the
situation you want to study.
(3) You decide what to keep and what to ignore in your knowledge of
the objects and their interrelationships.
e The result is an idealized version of the question.
(4) You translate the idealized version of the question into mathematical
terms.
e The result is a mathematical version of the idealized question.
(5) You identify the field of mathematics you think you're in.
e You bring into the forefront of your consciousness your in-
stincts and knowledge about this field.
(6) You do mathematics.
e The result is solutions, theorems, special cases, algorithms,

estimates, open problems.
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afraid. On the other hand, what modeling requires is understanding of the
original situation, an argument that the idealization makes sense, and the
check that the results of the mathematical work carry meaning outside of
mathematics.

3. Discrete Mathematics and the Teaching of Modeling

I believe that relating mathematics to the rest of the world is an essential
part of mathematics education. We have not done our job if this aspect is
not included. We ought to have word problems, traditional applied mathe-
matics, and mathematical modeling—all three. Why? If modeling is what
actually happens when you apply mathematics in the real world, why don’t
you just teach that? There are three main difficulties that I will discuss:
mathematical modeling takes a lot of time, it requires a lot of knowledge on
the teacher’s part, and there is a lack of certainty in the results which, in
the eyes of the public, is quite uncharacteristic of mathematics.

It is without doubt true that modeling is time consuming. So let us
agree that not every problem with an applied flavor will go through the full
(1)-(8) above. But in terms of a typical word problem, how do you tell a
good problem from a bad one?

My answer depends on whether the problem could be the middle portion
of a genuine model. What do I mean? Here is a sample word problem: “An
electric fan is advertised as moving 3375 cubic feet of air per minute. How
long will it take the fan to change the air in a room 27 ft. by 25 ft. by 10
ft.?” Now you all know what you are supposed to do: multiply 27 by 25 by
10 and divide the result into 3375. But the assumption behind this is that
the room is hermetically sealed and that the fan evacuates all the air before
any new air comes in! Absurd! This is not off by a little bit, it’s off by maybe
an order of magnitude. You could do a sensible discrete approximation to
this by evacuating 10% of the air, replacing it with replacing it with fresh
air and thereby diluting the old air, and repeating this process until the old
air is no longer noticeable. That’s a model that would make more sense.
You obtain a linear recursion for the amount of “old” air that is left after k
evacuations, and you ask how long it will be until the old air can no longer
be perceived. This is a reasonable mathematical model; by my definition,
the original word problem was not a good one.

A word of caution: there are word problems which were never meant to
be taken seriously. The context is deliberately whimsical, and is intended
%0 add lightness and humor to a heavy lesson. For example, Kolmogorov in
_1966 gave the problem of a bee and a lump of sugar at two distinct points
side & triangle. The bee wishes to fly a minimum length path to the lump
(’f_ Sugar, under the condition that she must touch all three sides of the
rna“f-ﬂe along the way. I have no objection to such a problem-—in fact, it’s
Ovely! But nobody pretends it's about actual bees! What I object to are
Problems that pretend to be real but couldn’t be.
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\ Our second objection is that real modeling requires a lot of knowledge
| on the teacher’s part, knowledge of a lot of fields outside of mathemat-
That’s true, but needs to be examined very carefully. Mathematics
gets applied in all aspects of everyday life, intelligent citizenship, and other
disciplines and occupations. Turthermore, most branches of mathematics,
certainly all at the school and undergraduate level, have significant practical
applications. In fact, there are unexpected and rather interesting connec-
tions between these two observations. When we worry that teachers, and
students, may not know certain felds to which mathematics 1s applied, we
often have in mind the field of physics. What mathematics i8 most applied
to physics? Classical, continuous, analysis. Discrete mathematics is just as
important for applications as continuous mathematics, and there tend to be
many more applications to everyday life, operations analysis, and the social
,re the natural experiences of both teachers and students can
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classroom and mathematical mode
offectiveness. What we are saying is that mathematical modeling can be q
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of the development is in the area of discrete mathematics. Voting and fair L
division and the cleaning of streets are just as interesting mathematically as B
moments of inertia, and they use a lot of available intuition and experience. () E
Here are partial descriptions of some of my favorite modeling situations p (
which lead to discrete mathematics and can be made accessible to high b.:‘i
school students.
(a) Traditional private line pricing in the telephone business leads to au{;
minimal spanning trees, Cayley’s theorem a8 well as Prim’s and cl
Kruskal’s algorithms, Shamos’ shortcuts, the Steiner network prob- fli

al

lem, and NP-completeness. The key modeling question: what 18
ve much of the histori-
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cal development. A discussion of the private-line pricing problem is
’ given in [7].

1 a computer leads to the problem of
cles for the graph which is the vertex
and edge structure of an n-dimensional cube. Tt is easy to give an
ngle such Hamiltonian cycle, buf how many different
cycles are there? The graph theory soon becomes mixed with group
theory. The key modeling question: when are two cycles «different” ’
It turns out that for engineering purposesﬂa;nd this is where model-
ing is especially important—you want two Hamiltonian cycles to

not different, (i.e., equivalent) if one can be obtained from the othe?
by a symmetry of the n-dimensional cube. How many equ'wa,leﬂ'-’:fa

classes of Hamiltonian cycles are possible on an n-dimensional Cllb'"*”r
The answer appears t0 be unknown fo

(b) Building a counting circuit i
enumerating Hamiltonian ¢y
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r dimensions 1 2 6.
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The mathematical formulation of this problem, and the complete
discussion for four dimensions (i.e., counting from 0 to 15) may be
found in [3]. This paper also relates the counting problem to the
earlier Gray Code work during World War I, which was essentially

a problem of analog-to-digital conversion. Martin Gardner refers to
the answer for n = 5 in [2].

(c) In baseball, some of the modeling has been done for us, as in the
definition of batting averages. If an additional hit takes a player’s
average from .299 to .306, how many at-bats and how many hits
has that player had? This turns into a wonderful number theory
problem, and involves Farey Series and continued fractions if we
so choose. It is mathematical detective work: how do you turn a
decimal into a fraction? We traditionally teach this for terminat-
ing decimals and repeating decimals, but not for arbitrary decimals
known to a certain number of places—like batting averages.

The baseball example as such has not appeared in print; it is part
of the author’s lecture “Some Mathematics of Baseball” [6], which
is one of the American Mathematical Society’s videotaped “Selected
Lectures in Mathematics”. The same problem arises with free-throw
bercentages in basketball, and may be found in [5].

(d) Ed Gilbert at AT&T Bell Labs, who was involved in the research of
(a) and (b), is the originator of the following problem: how do you
build a perfect box? If you have six rectangular pieces of wood, what
patterns of one piece covering another at an edge and at a corner
are possible? There is some simple topology in this, and the Euler
characteristic gives a lot of insight. Can you build a perfect box
from six identical pieces of wood? The answer is “not in general”,
although it is possible if the dimensions of the blocks of wood satisfy
certain conditions. Gilbert’s article on this subject is [4]

() There are many well-known and more traditional problem areas that
meet our requirements. I shall mention just one, that of coding the-
ory. Noiseless coding, such as Huffman Codes, and group codes for
the binary symmetric noisy channel, are two very accessible sub jects.
The combination of geometry, beginning group theory, and linear al-
gebra at the beginning of group codes is especially appealing.

A nice exposition of the basics of group codes from just the point
of view recommended in the previous paragraph may be found in [9].
Huffman codes at a level appropriate for high-school students may be
found in [8]; the proofs related to Huffman codes specifically but not
to noiseless coding more generally, may be found in the appendices.
A more nearly complete exposition of noiseless coding appears, for
example, as chapter 2 of [1].

Let y

the| s close with the third objection to mathematical modeling, namely
e

08s of certainty. There is personal judgment in the problem formulation
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Gt reality. Worse than that, there aré honest differences of opinion; for

example, if a problem concerns fair division, or an optimum location, what

to one person looks fair may not seem fair to another. Or, to give another

example, when competing criteria in an optimiza.tion problem are naturally

measured in different units, such as lives and dollars, then there is n0 obvious
way to equate them, and disagreement is inevitable. This contradicts the .-
g and, alas, some teachers, that mathematics 18 The R Ole‘f'

1

myth, held by many student
a field of single right methods, single right answers, and unambiguous truth.

This is actually not true of pure mathematics either, but it isn't even close

when you apply mathematics to the rest of the world. We have to admit that
this observation may be especially distressing to those who like mathematics
primarily because it is a Way of making a reasonable living and at the same
time minimizing any danger of involvement with the real world. For such
blems are gurvivable, because of their degree of unreality,

people, word pro
but mathematical modeling may cause great unhappiness. Their response 1. Usin
may be to deny that modeling has & place in the mathematics curriculum. One of _
Now discrete mathematics is especially useful in applying mathematics in stie ) c;. th? r
relatively controversial areas. Is this one of the reasons why its place in the cacti mla, 16T IS0
curriculum has been hard to secure? p 1oa Qroblen,
ics. Applicatior
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