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1. Introduction

The Curriculum and Evaluation Standards for School Mathematics of
the National Council of Teachers of Mathematics [8] can be viewed as an
attempt to shift attention in the mathematics curriculum to high-level cog-
nitive issues, and away from the traditional focus on the accumulation of
Jow-level rote computational skills (tasks that increasingly ubiquitous ma-
chines do quite well). At all levels of mathematics education, and in many
different ways throughout modern culture, we see this same general shift to
higher cognitive issues and skills. A consensus has rightly emerged that one
of the principal goals of mathematics education is mathematical literacy and
confidence in mathematical modes of thinking. The purpose of this paper is
primarily to discuss the role of mathematical content in achieving this goal.

At every grade level, the following four standards appear at or near the
head of the list:

Standard 1: Mathematics as Problem Solving.
Standard 2: Mathematics as Communication.
Standard 3: Mathematics as Reasoning.
Standard 4: Mathematical Connections.

We will call these the First Four. No doubt they appear at each grade
level because they address directly what it means to do mathematics. The
items that follow the First Four in the various Standards lists by grade level
describe, for the most part, new approaches to old content with a minimal
amount of new content. We argue that more needs to be done in terms of
content — particularly in grades K—4.
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One of the ironies in this age group is that their playground culture is
rich with combinatorial games, with riddles and word-play, with informal
discussions of infinity, space-time, and the Liar Paradox. They are busy
with topological and dynamic amusements such as tether ball, jump rope,
cat’s cradle and braids. These activities and puzzlements are in many ways
closer to the spirit of mathematics as it known by mathematicians than what
is presented as “mathematics” in the classroom.

2. The First Four: What do they really mean?

Mathematicians understand that making connections, communication,
problem-solving and reasoning are at the heart of their discipline. As mea-
surable skills, however, these are nebulous — far more difficult to teach and
track than the ability to count, compare, or compute. One of the things
that is commonly happening in practice as school districts and curriculum
developers wrestle with the Standards is that the First Four are in many
cases being split off and treated differently from the rest. In particular, they
are in many cases being interpreted merely as process standards having no
particular connection to any kind of mathematical content.

One well-meaning principal of an elementary school in British Columbia,
which has been used as a model for curriculum reform, put it this way.
“These four standards are really important — we handle them elsewhere
in the curriculum!” By this was meant that communication skills are prac-
ticed in creative writing, problem-solving skills are practiced in designing
art projects, etc.

Our central argument here is that the First Four cannot be realized
without an expanded agenda of interesting mathematics and mathematical
experiences to reason, communicate and problem-solve about. We simply
cannot realize these standards by means of classroom discussions about our
ideas for doing long division or naming triangles. If the current impoverished
K-4 mathematics agenda is not capable of supporting any meaningful rea)-
ization of the First Four, we must look to all of mathematics for expanding
the range of ideas that are brought to the K—4 classroom.

We believe the K-4 content curriculum should include anything and ev-
erything suitable for a Mathematical Sciences Museum and thus the project
of realizing the First Four for K-4 is naturally allied with the vital project
of mathematics popularization for all ages. In these first years, an enduring
Sense should be formed of what mathematical science is about and how it
feels to participate in this adventure of the human spirit, central as it is to
all of modern science and technology.?

In fact, science popularization is inherently concerned with the K-4 au-

dience because science museum exhibits are, more or less, designed for the

H_h_—-——-_._
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3. Pass out the maps and invite students to find ways to color them with
as few colors as possible, working individually or in groups, as they
prefer.

4. Be an attentive listener and facilitator. Encourage the children to
describe their ideas for solving this problem and to explain what they
are doing to each other.

5. Afterwards, have the children write about their ideas, draw maps of

their own to color, and/or share the activity with a different group of
children.

The coloring problem is one of the great gems of discrete mathemat-
ical modeling. Some of its applications include: the assignment of non-
interfering frequencies to radio stations, the timing of traffic lights, the
scheduling of meetings and machines, and the scheduling of garbage truck
routes. Coloring is also an activity to which the K-4 audience is already na-
tively inclined. There is some satisfaction in connecting this ordinary child-
hood artistic activity to the deep and important mathematics that concerns
it. Surprising to most people is the fact that coloring problems (of vari-
ous kinds) remain a subject of vigorous mathematical investigation. They
are important to all kinds of discrete mathematical modeling, including, for
example, the analysis of DNA sequences.

3.2. Coloring: What’s In It? In K4 classrooms, where children are
puzzling over finding the minimum number of colors for various maps, all
kinds of interesting and deep mathematical issues naturally arise. We are
concerned that if these ideas are left off of the content agenda, teachers will
lack an adequate reference framework to appreciate, stimulate and support
the problem-solving strategies that the children will invent. The following is
an unsystematic inventory of various fragments of our classroom experiences
with the coloring problem, pointing to various “advanced” mathematics con-
tent that emerged.

3.2.1. “Two is not enough!” What typically happens with a hypothet-
ical map M, like the one above, with chromatic number 3 (that is, where
3 colors are required) is that someone first colors it with 7 colors, and then
Someone colors M with 5 colors, ... the number gradually improves. But
€ventually we are left wondering (publicly, as we celebrate this progress)
Whether we can do it with 2 colors. Inevitably, some child will figure out
that (and explain energetically why) two is not enough for M, typically
by finding three regions each of which borders the other two. The mo-
ent when a child gives that excited shout needs to be appreciated as a

teachable moment” for the fundamental topic of mathematical proof.
“eacher not equipped with the idea of the importance of mathematical
Emf’f? and expecting to encounter and develop this concept, is not equipped
0 fully appreciate and empower the problem-solving going on.

Sy 3.2.2. 9T ¢id it with two!” Consider the same scenario with a different

ap M’ having chromatic number 2 (Figure 2.). We have the same gradual
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3.2.3. “I want to try to do it with 3!” When the children are working
with crayons, the natural thing to do at first is to dive in and color as well as
you can. However, once students want to experiment so as to truly minimize
their colorings, a certain weakness in using crayons becomes apparent — it
is impossible to back up! Once a region has been colored red, it’s messy (if
not impossible) to try to change it to green. On their own, or with minimal
encouragement, some children will switch to using colored tokens to mark
the colors that they assign to the regions. This provides a far more powerful
means to try to achieve an optimal coloring.

In one classroom, a teacher observing the children moving the colored
markers around on the maps remarked, “That’s a higher level of abstrac-
tion.” The teacher obviously (and rightly) felt the need to appreciate this
more powerful problem-solving approach in some way. Rather than rely
on psychological concepts for this, we can appreciate what’s going on in a
straightforward mathematical way: the regions are now functioning (manip-
ulatively) as variables that can be conveniently instantiated to a color value
by a marker. This is precisely why this is such a powerful problem-solving
strategy, and a good demonstration of why the concept of a variable is so
fundamental in mathematics. If variable is not on the content agenda, then
teachers are left to ad hoc psychological appreciations, with no sound con-
nection to the enduring and important mathematical ideas that are emerging
in the children’s activity.

3.2.4. “These maps can always be done with 2!” If you place your pen
on a piece of paper and draw any sort of intersecting continuous curve,
eventually returning your pen to its starting point without lifting it from
the paper, you will have drawn a map that is 2-colorable! (See Figure 2.)
Try it out. Colored, it looks like the kind of “psychedelic checkerboard” that
Salvador Dali might have preferred. It is generally regarded as somewhat
surprising that these kinds of maps are always 2-colorable. How can we be
convinced that this is true?

One way to explore being convinced is to make a loop of string. Imagine
that it is black string, imitating the black ink of a pen that would draw such
@ map. Surely you will agree that you could lay the loop of string right on
top of the curve that you drew. If it were just the string, lying like that
on the white paper, we might think, “What a mess!” We might decide to
_gl‘a,dually, very slowly, one step at a time, move the loops apart. We might
I this way obtain a very boring situation: the string is now just lying in a
loop that does not intersect, itself. If this were a map, it would just be one

:S}land and the sea surrounding it — of course we have no trouble 2-coloring
Lhis!

. Now let’s slowly go backwards, gradually putting things back the way
oY were. At each step of the way we will notice that we make one of a few

: _mds of moves, and in each case, the property of the map being 2-colorable
'S preserved! (

ey

See Figure 3.) Now we see why all these maps are 2-colorable:
are all just mixed-up forms of the single Two-Colorable Island (and the
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activity: begin by making a polka-dot pattern of 3 kinds of colored dots.
On top of this lay a fresh piece of paper, and tracing through, make a circle
around each dot. Now add edges between these circles, but only between
circles that surround differently colored dots! In this way you have created a
graph for which you know a secret 3-coloring, but it might be pretty hard for
someone else to find one. This is a kind of combinatorial one-way function,
a topic of profound importance in modern mathematical cryptography (for
further explorations beginning from this point and involving polynomials
as encryptions of public-key messages see [6]).

4. Other topics of interest for the early grades

We next describe (a bit more telegraphically) a few more topics that
have proved fruitful in exploring the first four standards in the early grades.

4.1. Minimum Weight Spanning Trees. We have come to call this
the “Muddy City Problem”. (See Figure 5.) The scenario is a city with
unpaved roads in which transportation becomes impossible when it rains.
The vertices of the graph represent houses and the edges are roads. The
labels on the edges of the graph are the costs of paving each segment of
road. The question becomes: What is the least expensive way to pave roads
so that everyone can get to everyone else’s house when it rains (even if it is
by a circuitous route)?

FIGURE 5. A map that can be used for the Muddy City Problem.

In the attempts to find an optimal solution for a given weighted graph,
A fypical classroom experience invokes a hurricane of arithmetic as children
Work to create ever better solutions, and to match the best that have been
tﬂl'md so far. The are many interesting nontrivial ideas and observations
Suj;l children will typically make and be prepared to explain and argue:
1 as the fact that an optimal solution has no cycles. Here again we have




N. CASEY ANDM. R. F

60

the vital content of mathematical

a (surprising and elegant) fast algorithm
tree problem raises the issues of algorith

Gomeone will notice that
solufions are generally not unique) invol
have here again an oppor
by induction to explain this.

4.2. Knot Theory: The C
large ropes, and we have had wo
rudiments of knot theory in element
topic for mathematics popuiarization

first-rate mathern
world in a very exciting W
one is aware that they are
the fact that there is a ma
richness of mathematic

to manipulative present

ay. Secondly,

ation.

FIGURE

One can
as the right hand
portable mirror to show th
Knots (once oriented) SUpp
tion” (having even 2 prime factoriz
manipulative exploration.
operations.

4.3. Other Exam
ics supporting rich oppor
s that in really engaging in
ical problem—solving and commu
mathematical ideas will naturally

expected and d

tunities t

proof arising.

m and of algorith
all the best solutions for a given

tunity for a simp

anadian Navy donated
nderful experiences Pr
ary classrooms.

for several reason

\atics that has recently

an object of m
thematics of knots is a power

ical science. Final

ask about mirror-image k
one? On some occasions we h
at the one is indeed t
ort & well-defined not

Here we have SY

ples. There are many m

these or any other Oppor
nication worthy

eepened as much as pos

ELLOWS

The fact that there 18
for the minimum weight gpanning

mic efficiency.
graph (optimal

ve the same number of edges. We
le, visually presented argument

to us a number of
esenting some of the
This is an excellent
5. First of all, it is

moved center-stage in the research
gveryone uses knots, and almost N0
athematical inve '

ful illustration of the

ly, knot theory is enormously open

6. A left-handed trefoil knot.

nots. Is the left-hand trefoil the same
ave brought along & large
he mirror 1mMage of the other
ion of (abelian) “multiplicar
ation theorem) that is open to engaging
mmetry and mathematical

ore such mathemat.ical top”
Four. The main PO
tunities for ma,themat;

of the name, “pdvance
and should be poth

o realize the First

and inevitably arise
sible.

IMPLEME N'IT]_N?

5. Parallels :E

. We have found
literacy to be bothﬁ'
for improving edue
mentary school yeé
formidable as The
arts educators hay
cal evaluation leaé
aimed less at malki
written language, :
literate person.

It is no less di
describe what it m
to say that someor
spell and punctuat
or can pass tests z
so-called literate p
mathematics, deve
complicated or con

Mathematics a
examination and ¢
each discipline thé
are often misconsti
?vith such a rich ar
in its entirety, yet
both mathematics
community in whic
most renowned an
position after a loz
the early years, og!

Elementary scl
when they plan an

e How can wi
community
damental? |

[ HOW can W(‘
them to apf
they will en
develop tast

* What must,
lated skills |

Similar quer«-tiﬁ

OFIyya e
"Mative vears
JEal's,




of
e
nt
is
ch
no
Te
he
en

same
large
other.
plica-
raging
atical

al top-
o} pO'lnt
hemat-
ranced”
»e both

IMPLEMENTING THE STANDARDS: LET’S FOCUS ON THE FIRST FOUR 61

5. Parallels Between Mathematics and Literature Teaching

We have found the analogies between print literacy and mathematical
literacy to be both strong and productive for generating ideas and methods
for improving education in mathematics during the critical, formative ele-
mentary school years. Lacking a scapegoat and deterrent to risk-taking as
formidable as The Debacle of the New Math, elementary school language
arts educators have benefited from 25 years of experimentation and criti-
cal evaluation leading to teaching methodologies and classroom structures
aimed less at making the student a skilled automaton with the structure of
written language, and more focused on the development of the student as a
literate person.

It is no less difficult to define what a literate person is than it is to
describe what it means to do mathematics. For example, it is not sufficient
to say that someone is literate because they know a lot of words, read fast,
spell and punctuate Standard English accurately, speak several languages,
or can pass tests about all of the books on a certain prescribed list. Yet
so-called literate people can do many or all of these things. Likewise, in
mathematics, developing a straight-forward definition of literacy is no less
complicated or controversial.

Mathematics and literature have much in common. The construction,
examination and communication of ideas is central to both disciplines. In
each discipline these activities are carried out within forms. These forms
are often misconstrued to be the discipline itself. Each discipline is so vast,
with such a rich and long tradition, that no individual can claim to grasp it
in its entirety, yet any aspect is accessible to the dedicated participant. In
both mathematics and literature, the participants in the discipline form a
community in which innovations and content are shared and examined. The
most renowned and influential participants in the community achieve their
position after a long period of initiation and experience, much of which, in
the early years, occurs in schools.

Elementary school language arts teachers ask the following questions
when they plan and evaluate their lessons [1]:

e How can we prepare students to become creative participants in a
community where the formulation and communication of ideas is fun-
damental?

¢ How can we, with materials and tools that are on hand now, teach
them to appreciate the vast and ever-changing quantity of material
they will encounter in their lifetimes, to assimilate new things, and
develop taste as they mature intellectually?

* What must we do so that all students acquire the complex, interre-
lated skills necessary to do all this?

Similar questions should be fundamental to mathematics teaching in the
OTMative years.
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and teachers, and how they can be answered by looking through the lens of
literature.

“Why does my child need to know about coloring or knot theory?”

Does your child need to read Charlotte’s Web or Huckleberry Finn? Does
your child need to know about dinosaurs or outer space? (It is sad that
mathematics is so universally associated with such a miserliness of spirit.)

“It’s 1mportant to teach arithmetic. So now you are saying that it is impor-
tant to teach coloring as well?”

It’s important to teach spelling, but it’s also important to read and enjoy
books. What particular books these are is not so important, but they should
be rich and interesting stories. It is much the same with mathematics.

Which topics are best for each grade level? Good mathematical topics,
like good stories, are appropriate at all grade levels. A story like St. Exe-
upery’s The Little Prince can be enjoyed by very young children, but is a
source of profound concepts for more mature readers. Similarly, a problem
like map coloring can be explored by children who are not yet able to read,
yet it is a source of complex and interesting conjectures and questions for
older students.

6. What Is To Be Done?

The elementary school principal who said, “These four Standards are
really important — we handle them elsewhere in the curriculum!” was not
(as one might first suspect) making an easy mistake. At this particular
school, meaningful contexts for learning and the development of communi-
cations skills are highly valued. An intelligent and demanding (and yes, it
includes phonics) Whole Language approach to print literacy is a deeply-
rooted practice at this “charter” school which has served for years as an
important model for curriculum innovation in British Columbia. The tradi-
tional mathematics content agenda at the elementary grade levels, however,
simply does not provide adequate opportunities to realize the obviously im-
portant First Four in mathematics, so in order to address them, teachers
must turn to opportunities elsewhere in the curriculum.

There are several things that we in the Discrete Mathematics and Com-
puter Science communities need to do:

® We need to pay far more attention to the needs and opportunities in
the early and formative years of schooling.

® We need to get the message out to the elementary schools that in-
tegrating the intellectual core of computer science (and its roots in
discrete mathematics) into the curriculum is of far greater impor-
tance than worshiping in the expensive Cargo Cult of computers-in-
the-classroom. (For further discussion of this point see [6].)

* We need to make the connection between mathematics education and

mathematics popularization. In the areas of discrete mathematics and
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computer science we have enormous resources of important, accessible [7] Alice Mijja
mathematics for this purpose. Violence ;

o We need to establish connections between mathematics education and [8] Nationa)
literacy education, especially at the K-4 level. Such connections are for Schooy.
likely to significantly strengthen both educational agendas. The com- DEp

R . . . . ARTME}
munication of mathematical thinking and argument, and the formu- E-mail g ]
lation of mathematical models and conjectures constitute challenging 7
and important kinds of writing tasks. Com?;g ARTMEN

e We need to encourage the development of whimsical, lengthy, conterit- E-mfﬁi (S;;;

rich children’s mathematical literature. We need story problems that
are real stories, not “Farmer Brown wants to build a rectangular
fence... . For example, we need 30-page stories with characters,
pictures, maps, and dialogue that incorporate interactive problem-
solving. We need to be training mathematics / cross-disciplinary stu-
dents (perhaps educational computer games designers) at the univer-
sities to create this kind of literature.

e We need to support teacher professionalism, and serve as (energy-
efficient) catalysts for change, by organizing and involving mathemat-
ical science undergraduate and graduate students in outreach from
the universities (perhaps as a component of service education pro-
grams). We need to similarly organize summer in-service institutes
for teachers, and mathematical science summer Camps for kids.

e We need to establish two-way communication with undergraduate ¢
departments of education. We cannot come across as the arrogant
experts of the “New Math” era. We must be prepared to enlighten
ourselves about the problems and goals of elementary teacher edu-
cators and the elementary school classroom itself. We must seek out
and work to establish productive relationships with teacher educators
and create a common ground where we can truly communicate the
relevance of our discipline and our enthusiasm for it.
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