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Discrete Mathematics Activities for Middle School

Evan Maletsky

There is a body of knowledge that has come to be known as discrete
mathematics and much of it is accessible to middle-school students. Many
related topics can already be found in the existing curriculum and others
can be readily integrated into it. Discrete mathematics problems tend to
be simply stated and easily motivated. They offer a rich, new source of
diversified problem-solving experiences that range across all ability levels.
Furthermore, they serve to portray mathematics from a broader perspective
than many typical practice exercises.

It is equally important to note that problems in discrete mathematics
can be incorporated into many of the hands-on activities that already are
part of the established classroom scene. This article focuses on that con-
nection through the two central ideas of counting and change. Counting is
viewed through number patterns, computation, manipulation, and visual-
ization, and these are connected to change through the mathematical idea
of iteration. It is the notion of iteration arithmetic, algebraic, and geo-
metric — that brings alive the subject of mathematics, and it is through
hands-on activities that it is made real. Emphasizing this combination when
we teach offers a dynamic view of the discipline so greatly needed by today’s
middle school students.

This article begins with a sampling of discrete mathematics activities
arising from a simple counting problem involving paper folding, then moves
through others that can be analyzed by graphs, and ends with some appli-
cations of iteration through geometric transformations. The examples illus-
trate the importance of both content and pedagogy and show how discrete
mathematics can be designed and woven into the broad fabric of middle-
school mathematics.

Counting

Almost every middle school student and teacher has, at one time or
another, used the folding of paper to explore a mathematical relationship.

_‘_‘-_‘—-—-—____
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This first illustration shows some different ways one simple paper model can

be tied into the arena of discrete mathematics.
Cut out some 2x8-inch strips of paper, one for each student. Have them

fold the strips in half and in half again as shown in Figure 1. Let them
visualize in their mind what the strip would look like unfolded.

| =

Ficure 1. Folding a strip of paper

Ask the students to mentally count all the rectangles that they visualize,
including the squares. After writing their individual answers, let them com-
pare and discuss their answers with other students. Once an agreement is
reached in their groups, they can unfold the strips and check their answers
by actually counting from the model. Finally, as a writing activity, have
your students describe the algorithms they used for their counting, both in
the abstract and in the concrete case.

This activity is much more than just one of visualization. It involves
analysis and systematic counting. One approach might be to letter the
squares (as in Figure 2a) and make a list of the 10 different rectangles using
successive letters, four, three, two, and one at a time (Figure 2b). Another
approach might be to show the solution in a graph with 4 vertices and 10
edges (Figure 2c). Six edges connect different vertices, denoting different
starting and ending squares. Four edges connect vertices to themselves,

indicating the same starting and ending square.

[A .B lc 61

(a)
ABCD ABC AB A A B(
BCD BC B
CD ¢
D D C
(b) (c)

FIGURE 2. (a) An unfolded and labeled piece of paper. (b)
Systematic listing of rectangles. (c) Using the edges of a
graph to represent starting and ending squares of each rec-

tangle.

The list reveals that, for two successive folds, the answer is 10, the sum

of the first four counting numbers. Compare the number 10 for two folds to
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the number 3 for one fold:

Folded once: 1 + 2 = 3.
Folded twice: 1 + 2 + 3 + 4 = 10.

Ask your students to fold the strip in half a third time and ask for an
educated guess as to how many rectangles will be in the unfolded strip now.
See how many students can find and extend the pattern.

Folded three times: 1+2+344+4+5+6+7+8=36

Some middle school students may want to explore this problem further
and look for a general solution. For n successive folds, the number of rect-
angles is the sum of the first 27 counting numbers.

Folded n times: 1 + 2 +3 + 4+ . + 2" =2n"lon o),

Given the formula, this paper-folding activity now offers students an
additional important experience with exponents and other algebraic sym-

bolism. For example, with four successive folds, there are 136 different
rectangles, since with n = 4,

"2+ 1) =22 1) = 8(16 4 1) = 8(17) = 136.

Are the counting numbers that come from this paper-folding activity,
such as 3, 10, 36, and 136, special in any other way? You may recognize
them from another discrete mathematics topic already in the middle school
mathematics curriculum. They are members of the set of triangular num-
bers.

Figure 3a shows the triangular arrays which account for the name “tri-
angular numbers”, Triangular arrays such as these can be easily built and
vividly displayed on an overhead projector. Figure 3b shows how the trian-
gular numbers are calculated by summing the rows of the triangular arrays.

Another feature of the triangular numbers emerges if we look at a dif-
ference table. In a difference table, we first record the differences between
successive triangular numbers — these are called “first differences”. Then we
record the difference between successive first differences — these are called
“second differences.” For the triangular numbers, second differences are all
1, as in Figure 3c.

Compare this to the familiar Square numbers where the second differ-
ences are all 2, as in Figure 4. Here we see another topic from discrete
mathematics, finite differences, closely connecting to the existing middle
school curriculum.

We can also look at other geometric arrays — squares, pentagons, hex-

agons, etc. — and introduce other sequences of “figurate numbers” — square
Numbers, pentagonal numbers, hexagonal numbers, etc. These geometric

atterns to explore, discoveries

arrays lead to counting activities, number P
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0 & & 1
O 1+2 = 3
142+3 = 6

2 2 10 = 14+2+3+4 =10
1+2+3+4+5 =15

14243444546 =21
1+2+3+4+5+6+7=28

(2243 4..4n  =nmel)2

(b)
(@)

Triangular Numbers | N N 610 15 - 21
N e 5 6~~~

First differences
1 1 1 1

Second differences 1
©

The triangular numbers. (b) Calculating the

FIGURE 3. (a)
ers. (c) Difference table for triangular num-

triangular numb
bers.

: NS N ANg N~
2 2 2 2

Square Numbers

First differences
Second differences 2

FicURE 4. Difference table for the square numbers.

to make and test, and more questions worth investigating. For example,
will pentagonal numbers have successive second differences that are all 37
For hexagonal numbers, will the successive second differences all be 47 The
answer is yes for all figurate humbers of this type. In fact, any second
degree, quadratic expression such as n(n + 1)/2 must have constant second
differences, an idea worth challenging your students to explore as a calculator

activity.

Let us go back to the folded strip of paper for some more counting
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and 1 digits can be formed. The answer here is

1
3
; 6 (4><3><2><1)+(4><3><2)+(4><3)+4=24+24+12+4=64.
0
5
1

I T I R AR

§+2+5 i For students at a higher level, ask them to turn the strip over and put
3: 44546 2 the digits 5, 6, 7, and 8 on the back, with the 8 behind the 1, before tearing
3+4+5+6+7 =28
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largest decimal without any mistakes. This may seem easy, but experience
proves otherwise. The first few correct choices, in order starting with 2, are
2,2.1,2.13,2.3,2.31,3,3.1,3.12, ...

From the point of view of mathematical content, this activity deals with
the important skill of ordering decimals. But even more important, students
must create them, and to do so requires the ability to play freely and imag-
inatively with numbers and shapes in situations involving discrete choices.
This skill needs to be developed and nurtured thoroughly in the middle
grades by embedding it within the existing curriculum and around famil-
jar classroom experiences. These kinds of simple exercises, while both fun
and challenging for students at this age, lay the foundation that will enable
them, in later years, to approach more profound and intriguing applications.

Graphs

Many problems can best be approached through models in the form of
graphs. Graph models offer a kind of organizational structure that can be
utilized in many problem-solving experiences involving both manipulatives
and counting. Let us look at an example.

Five cubes of different colors are arranged in a row. How many
different arrangements are possible?

Many students familiar with counting know this is a permutation prob-
lem and know the answer to be 5! = 120. But, when asked for an explanation
or meaning, they have little to say because they really see nothing. Early
counting experiences of this type need to be done with concrete materials
and modeled in diagram form for better understanding. In the following
example, we use five blocks, one of each of the colors green (G), orange (O),
red (R), yellow (Y), and blue (B).

You might begin by arranging the cubes in a row and discussing their
order. Have students suggest and show other orderings. Put the cubes in
your hand and ask how many choices there are for the first position. How
many choices remain for the second, and then the third, and the fourth,
and the fifth positions? Connect these questions to the blocks and to the
diagram in which the numbers are entered one at a time (see Figure 6), and
to their product.

FIGURE 6.

A systematic listing of all solutions is often accessible and useful in
solving many counting problems. However, a listing of the 120 choices here
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seems a bit tedious. This is one place where a graph can be useful. The
vertices represent the cubes and the edges show all the possible connections
(see Figure 7a). Every one of the 120 possible arrangement of the cubes
is a distinct, directed path of four edges connecting the five vertices. The
arrangement GORYB can be represented by a path as shown in Figure 7b.

0O O

(a) (b)

FIGURE 7. (a) Graph with vertices representing blocks. (b)

Directed path representing the linear arrangement of blocks,
GORYB.

Many good counting questions can be asked. How many of these paths
start at G? How many start at G and end at B? How many have G next to
B? How many do not have G next to B?

Situations can be analyzed and answers can be found from the graph.
Have students trace out paths for given arrangements and arrange the cubes
for given paths. (These require very different skills.) Have students count
the number of edges in the complete graph and explain what the number
means. Connect the answer to the problem of choosing two cubes from the
set of five. See if they recognize the answer as a triangular number.

Many discrete mathematics problems are already in the textbooks and
other available literature as examples addressing teaching methods or class-
room issues. The EQUALS project at the Lawrence Hall of Science at the
University of California at Berkeley, through its publications, Get It To-
gether, suggests an interesting cooperative learning activity similar to the
one just described. It is an arrangement problem involving six colored cubes.

Four students independently receive critical information, that they alone
possess, about the arrangement. All students must participate because each
student has information to contribute and needs to do so at the right time.
The task is to arrange the six colored cubes in a row in the correct order.

a: Green is not next to yellow and purple is not next to green.

b: Orange is not next to yellow and green is not next to blue.

c: Yellow is not next to red, blue not next to purple, and red not next
to orange.

d: Purple is not next to yellow, blue not next to orange, and green not
next to red.
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The problem offers an excellent example of a cooperative learning sit-
uation in the arena of discrete mathematics. One approach is hands-on,
with the solution emerging through the arranging and rearranging of the
colored cubes. Another approach is to draw a complete graph with 6 ver-
tices representing the colors and 15 edges representing all possible ways any
two colored cubes might touch each other, when arranged in a row. Clearly,
in any given arrangement of the cubes, only some of these connections will
be made. One by one, the students remove those edges not allowed by the
restrictions they were given. In all, 10 edges will be eliminated from the
graph. The 5 edges that remain reveal the only possible sequence, ordered
left-to-right or right-to-left, shown in Figure 8.

Y

v
O

G

FIGURE 8. This path shows the only two possible arrange-
ments of the six cubes when placed in a row: YBRPOG or

GOPRBY.

Encourage students to make up similar sets of conditions on their own.
Let them check one another’s suggestions. Have them describe algorithms
for creating problems that will ensure unique solutions. These are some of
the important components of the critical thinking required for doing math-
ematics.

How can discrete math problems such as these, involving the ordering o
colored cubes, be modified to assign lengths to the edges? Suppose, instead
of having five colored cubes, teams of students select five whole numbers in
the range 0 to 100. Imagine the numbers as the names of cities which are
connected by airplane flights.

Begin by having the teams arbitrarily place their five vertices, identified
by their choice of numbers. Next, have them assign distances to the edges
corresponding to the differences between the numbers on the connected ver-
tices representing cities. Here are some possible investigations to consider.

e Try to find the shortest route connecting all five cities. Where would
you start and where would you end? What about a round trip that

takes you through all five cities?
e Where would you start and end for the longest route, without repeat-
ing any connections? Is the same sequence the best for the longest

round trip?
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Have the teams try to find algorithms for solving these problems. Ask
whether their procedures would change for an even instead of an odd number
of cities. In middle school, students need the experience of exploring, trying,
testing, and expressing their ideas in situations like these as much as they
need to learn and apply known algorithms from discrete mathematics.

Figure 9 shows a complete graph, weighted on the edges by the distances
for the five cities numbered 6, 32, 19, 84, and 61.

FIGURE 9. Graph showing five cities with distances.

There are 5! = 120 directed paths that connect the five vertices and
4! = 24 directed trips through them back to the starting point.

Finding the shortest paths and circuits through the five vertices in this
situation does not require a great effort, especially if one realizes that tours
among the points on the graph correspond to routes along the real number
line. Finding the longest paths and circuits requires more thinking and

testing. Searching for appropriate algorithms for any set of vertex values
poses some interesting challenges.

Iteration

When the dynamics of change is built into a hands-on activity for the
mathematics classroom through some iterative process, the experience be-
comes all the more powerful. One reason is that numerical, geometric, and
algebraic relationships and connections often emerge from a single experi-
ence, as in the following activity.

Start with an equilateral triangle cut from paper. Mark a vertex P and
repeat the following folding procedure through several stages:

When the vertex P appears in a triangle, fold it to the midpoint
of the opposite side and then unfold. (See Figure 10).

The outline of the folded paper at each stage is a trapezoid, but these
trapezoids change through successive stages. How are they changing? What
do you see?

From a measurement point of view, the trapezoids are growing in height.

Start with a triangle whose area is 1 square unit and watch the areas of the

trapezoids change.
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Stage 0 Stage 3 Stage 4

Fi1cUrE 10. " A trapezoid folding activity

The first triangle folded over has an area of 1/4. :
The second folded triangle has an area of (1/4)2 or 1/16. .

The third has an area of (1/ 4)® or 1/64, and so on.

Subtract these successive powers of 1/4 from the original area of 1 to
find what area remains for the trapezoid at each stage:

3 15 63 255
1 - ¥ 64 256
Stage 1 Stage 2 Stage 3 Stage 4

is repeated over and over? The

What else is changing as the process
tterns of a discrete nature, as in

unfolded stages reveal other interesting pa
Figure 11. ‘
A é ﬁ é 5 )
Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 | 1:
FIGURE 11. ‘

. . | By i
In this form, we can view triangles and trapezoids in quite a different | process,
way, as shown in this table: Figure .
each st i
Stage ol1]2]3] 4 n struczﬁ

Number of triangles | 123 4| 5 n+1
Number of trapezoids [ 0|1 |3 |6 |10 n(n+1)/2 S
Here again, we find the triangular numbers embedded in a counting prob- —E‘
lem centered around a geometric activity. Looking at the folds themselves, %
still another vision may appear. Let your students describe what they see. F’
One image is that of a strangely distorted ladder. When you climb it As |
each successive step is half as high and each successive rung half as wide. these w?
When you look up, you forever see reduced versions of exactly what you saWw where t hf
before. And the climb, step-by-step, is endless! the sp aﬂu
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to see, think, and talk about concepts such as these from an intuitive point
of view during the middle school years. By choosing a good visual model
and asking the right questions, one can bring together a host of related
mathematical ideas in a single activity. And it is not surprising that many
of these turn out to be discrete in nature.

Suppose the folding process is changed a bit, as described in the following
algorithm.

Every time you have a triangle, fold each vertez to the midpoint
of the opposite side. Cut off the corners and keep only the
middle triangular piece at each stage. (See Figure 12.)

Stage 1 Stage 2 Stage 3 Stage 4

FIGURE 12.

A new set of figures is generated and new sets of number patterns emerge.

Stage 0 1 2 3 4 n
Number of triangles | 1 1 1 1 1 1
Area 1/1/4]1/16|1/64 | 1/256 (1/4)"
Perimeter L{1/2] 1/4| 1/8] 1/16 | (1/2)"

By interchanging what is kept and discarded in the folding and cutting
process, an entirely different sequence of figures is created, as shown in
Figure 13. This time, keep the corner pieces and discard the middle piece at
each stage with each triangle. Now the process leads to an entirely different
structure, a fractal called the Sierpinski triangle.

Stage 0 1 2 3 4 n
Number of triangles | 1 3 9 27 81 3"
Area 1/3/419/16 | 27/64 | 81/256 (3/4)"
Perimeter 1[3/2]| 9/4 27/8 | 81/16 | (3/2)"

As an alternative approach in the classroom, have your students draw
these two sets of figures on triangular dot paper. Choose a large triangle
Where the dots divide the sides into units that number a power of 2. This way
the spacing of the dots will facilitate drawing several repeated reductions by
one-half. For many students, both types of activities would be worthwhile.
Indeed, seeing, drawing, and visualizing experiences all need to occur more
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Stage 1 Stage 2 Stage 3 Stage 4

FIGURE 13.

often in the mathematics classroom to improve our students’ abilities in
visual literacy.

The distinct, discrete stages of growth clearly show an underlying prop-
erty of fractals, that of self-similarity. Copies of the figure appear within
itself at all scales. Three reduced images of the initial stage can be seen
in stage 1. Three reduced images of stage 1 can be seen in stage 2. Three
reduced images of stage 2 can be seen in stage 3, and so on.

The intricate structure of the emerging fractal can be measured by its
fractal dimension. For the Sierpinski triangle, this complexity measurement
is approximately 1.58. See Volume 1 of [2] for an introduction to the topic
of fractals.

Is there an underlying structure here that is independent of the shape of
the initial figure? That is, if we start with a different figure and repeatedly
put together three copies of the figure, scaled to one-half, what do we get?
Have students explore this question starting with other figures, such a right
triangle, a scalene triangle, or even a square, rather than an equilateral
triangle.

Start with a square cut from paper. Cut it in half vertically and hori-
zontally. Use the rebuilding process shown in Figure 14 with three reduced
copies at each stage placed in the shaded cells.

B kbbb

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

FicURE 14. Iteration based on a square

It does not take many stages to see a familiar shape emerging. Have your
students think, talk, and write about the similarities and the differences
between the changing structures being generated from squares and those
that were generated above from triangles. In both cases, of course, the limit
structure is the Sierpinski triangle.

As a final activity, have students put their own personal twist to the
rebuilding step in the iteration process, which can be abbreviated as Reducs

Replicate, and Rebuild.
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Mentally label the three cells A, B, and C, as shown in Figure 15. When
the reduced images are dropped back into the appropriate cells, consider
possible rotations. In the sequence of figures shown in Figure 15, the reduced
copy in cell A is always rotated 270° clockwise at each stage. Those copies
placed in cells B and C always remain in their original orientation, which,
for convenience, can be called a rotation of 0°.

o
e A B

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

FIGURE 15.

Four choices of rotation are possible for each of the three cells. That
gives 4 x 4 x 4 = 64 different rebuilding codes using rotations. This can lead
to the exploration of a whole family of related fractals with many different
structures. Have students create their own personal fractals by making
individual choices of rotations for cells A, B, and C. They can cut out and
tape together their images or draw the first few stages on graph paper. The
first four stages can be readily drawn using 2 X 2-inch initial squares on
1/8-inch graph paper.

When reflections are cons1dered another four transformations of the
square can be explored. See Figure 16.

¥ !

| . )

@ (b) © @

FIGURE 16. (a) Horizontal reflection about the vertical
axis. (b) Vertical reflection about the horizontal axis. (c)
Reflection about the lower-left, upper-right diagonal. (d) Re-
flection about the upper-left, lower-right diagonal.

In the sequence of iterations shown in Figure 17, the reduced copy in
cell A is reflected about the upper-left, lower-right diagonal at each stage.
Those copies in cells B and C remain in their original orientation.

In all, four rotations and four reflections can be made in each of the three
square cells. With eight transformations possible in each cell, there must be
8 x 8 x 8 = 512 different rebuilding codes. Will all 512 different building
codes produce different fractals? The answer is no. Because of symmetry,
some images will be duplicated. How many distinct fractal images will there
be? The question is left for the reader to investigate and answer.
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FIGURE 17.

Here we are, answering and asking yet another counting problem emerg-
ing from an iterative, geometric activity. The middle school curriculum is
fertile ground for increased attention to situations involving discrete math-
ematics. The problems are all around us if we but look for them.
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