Name(s):

For each of the following problems,

- 1. First carefully sketch and shade the relevant area (label points on axes)
- 2. Write out the definite integral that will give its exact value. Show work in finding the bounds for integration.
- 3. Finally, evaluate the integral you can use maple to do this, no need to show work. **Give your answer as a decimal with 4 decimal places.** You may need to type "evalf(%)" to get maple to write it as a decimal.

You may use maple to plot the graphs if it is helpful. Unless otherwise specified (e.g. you are asked explicitly to *estimate*) find the exact coordinate of the bounds (e.g show any work in solving for the bounds – give and solve equations, etc.)

1. The area bounded by $y = 2^x$, y = 8, and the y - axis.

2. The area bounded by $y = 3^x$, x = 2, the x - axis, and the y - axis.

3. The area bounded by $y^3 = x + 1$ and $x = -y^2 + 3y$ that lies ABOVE the x - axis.

4. The area in the <u>first quadrant</u> between $x^2 + y^2 = 1$ and $x^{1/2} + y^{1/2} = 1$.

5. The area in the <u>first quadrant</u> bounded by the curves $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and $x = -\frac{y^2}{4} + 1$.

6. The area between the curves $y = \cos x$ and y = .5x - 1, bounded on the left by the y - axis. Use maple to estimate the points of intersection.

7.	Find the area between the curves $y = \sin x$, $y = x^3 - 2x - 1$. Use maple to estimate the points of intersection.
0	
8.	The area between $y = -\sin(x)$ and $y = -2\sin(x)$ from 0 to π . Before calculating the area, make a guess based on your sketch. Sketch:
	Guess:
	Definite Integral and actual value: