Maple file name: Last name_ Last name _Slopefields.mw

$$
\begin{array}{|l|l|}
\hline \text { DE }=\text { Differential Equation } & \text { Slope Field (common) }=\text { Direction Field (text) } \\
\hline
\end{array}
$$

Open and save a new Maple document

Enter the header student package and the new DEtools package.
with(student):
with(DEtools):

Maple Commands (reference only, the lab starts on the next page)

Plotting a specific slope field $\left(\frac{d y}{d x}=x-y\right)$:

$$
\text { dfieldplot }([\operatorname{diff}(x(t), t)=1, \operatorname{diff}(y(t), t)=x(t)-y(t)],[x(t), y(t)]
$$

$$
t=-2 . .2, x=-2 . .2, y=-2 . .2)
$$

[Note, if $\frac{d x}{d t}=1$, then $x=t, \operatorname{diff}(x(t), t)=1$, diff $(y(t), t)=x(t)-y(t)$ parameterizes $\frac{d y}{d x}=x-y$]
Plotting a specific slope field $\left(\frac{d y}{d x}=x-y\right)$ and one solution curve [through $(-1,0)$]

$$
\begin{aligned}
& \operatorname{DEplot}([\operatorname{diff}(x(t), t)=1, \operatorname{diff}(y(t), t)=x(t)-y(t)],[x(t), y(t)] \\
& t=-2 . .2, x=-2 . .2, y=-2 . .2,[[x(-1)=-1, y(-1)=0]])
\end{aligned}
$$

Plotting a specific slope field $\left(\frac{d y}{d x}=x-y\right)$ and two solution curves [through $(-1,0)$ and $(0,2)$]

$$
\begin{aligned}
& \operatorname{DEplot}([\operatorname{diff}(x(t), t)=1, \operatorname{diff}(y(t), t)=x(t)-y(t)],[x(t), y(t)] \\
& t=-2 . .2, x=-2 . .2, y=-2 . .2,[[x(-1)=-1, y(-1)=0],[x(0)=0, y(0)=2]])
\end{aligned}
$$

Plotting slope fields for general first order DEs
(1) Write your DE in the form $\frac{d y}{d x}=F(x, y)$
(2) In the command code:
a. Replace $x(t)-y(t)$ with the formula for $F(x, y)$
b. Type $x(t)$ for every instance of x in $F(x, y)$
c. Type $y(t)$ for every instance of y in $F(x, y)$
(3) Set the desired viewing window by changing $t=-2 . .2, x=-2 . .2, y=-2 . .2$.

The t and x values must always match.

Plotting solution curves through (a, b)

$$
[x(a)=a, y(a)=b]
$$

Maple Slope Fields Lab Activities

By hand

1. Use the provided grid (label the axes) and draw the slope field for the $\mathrm{DE} \frac{d y}{d x}=x-y$. Plot the slopes for all points $-2 \leq x \leq 2,-2 \leq y \leq 2$ at intervals of 0.5 in both directions. Use a ruler and be sure to plot the slopes with reasonable accuracy.
2. Carefully draw the solutions curves to the $\mathrm{DE} \frac{d y}{d x}=x-y$ which pass through the following points (there will be 4 different solution curves).
(i) $(-1,0)$
(ii) $(0,1)$
(iii) $(1,0)$
(iv) $(0,-2)$

In Maple

3. $\frac{d y}{d x}=x-y$
a. Sketch the slope field.
b. Draw the solution curves passing through $(-1,0) .(0,1),(1,0)$ and $(0,-2)$. Right click on each solution curve and change it to a different color; provide a key.
4. $y^{\prime}=x^{2} \sin y$
a. Sketch the slope field.
b. Sketch the solution curve passing through $(0,1)$ and three more points of your choosing . Color the curves and provide a key.
5. $y^{\prime}=x\left(y^{2}-4\right)$
a. Sketch the slope field.
b. Sketch the solution curve passing through $(0,1)$ and three more points of your choosing . Color the curves and provide a key.
6. Make up your own DE of the form $\frac{d y}{d x}=F(x, y)$
a. Sketch the slope field.
b. Sketch the solution curve passing through four points of your choosing. Color the curves and provide a key.

One copy/partner pair: Email your correctly named Maple worksheet to fleschb@wou.edu Email subject line: Maple Slope

Name: \qquad

Hand sketch: Slope field for $\frac{d y}{d x}=x-y$

