Vertex formula

- $f(x)=A x^{2}+B x+C$ standard form
- X coordinate of vertex is $-\frac{B}{2 A}$
- Use this value in equation to find y coordinate of vertex
- 'form' is the way a function is written
- 'formula' is a method to solve it

Chapter 9: Quadratic Functions
 9.3 SIMPLIFYING RADICAL EXPRESSIONS

$$
f(x)=2 x^{2}+10 x+7
$$

- Graph of the function
- Can find vertex from function
- Find axis of symmetry using A and B

Simplifying Radical Expressions

- Radical: square roots and higher roots
- Shorthand method of writing roots
- Use fractional exponent
- Not necessarily a fractional value of exponent
- Some roots are 'rational'
- Can be written as a ratio: exact value
- Some roots are 'irrational'
- Can only be written exact in 'root' form
$\sqrt{2 x+5}$
- Also a radical expression
- Radicand is a binomial
- Composed of 2 terms
- Separated by addition
- Important to recognize it is binomial,
$\sqrt{49} \quad-\sqrt{49} \quad \sqrt{-49}$
- Not the same thing!!
- First has principal sq.rt. of 7: 7•7=49
- Second -7: - (7)(7)
- Third: not a real number
- There is not a real number you can multiply by itself to get a negative product
- When radicand is negative, there is not a real square root

Irrational square roots: $\sqrt{48}$

- Calculator says 6.92820323
- Not exact value!
- We won't use these approximations, except to verify our simplified versions
- We will learn method to simplify irrational roots

Simplify square root: $\sqrt{36}$

- $\sqrt{36}=6$
- $36=9 \cdot 4$
- $\sqrt{36=} \sqrt{9 \cdot 4}=\sqrt{9} \cdot \sqrt{4}$
- $=3 \cdot 2=6$
- Apply this method to irrational roots

Simplify square root: $\sqrt{48}$

- $\sqrt{48} \approx 6.92820323$
- $48=16 \cdot 3$
- $\sqrt{48}=\sqrt{16 \cdot 3}=\sqrt{16} \cdot \sqrt{3}$
- $=4 \cdot \sqrt{3}$
- Leave irrational part of root under radical sign

Simplify square root: $\sqrt{72}$

- $\sqrt{72} \approx 8.485281374$
- $72=36 \cdot 2$
- $\sqrt{72}=\sqrt{36 \cdot 2}=\sqrt{36} \cdot \sqrt{2}$
- $=6 \cdot \sqrt{2}$
- Leave irrational part of root under radical sign

Square root of quotient (division, fraction)

$$
\sqrt{\frac{16}{49}}=\frac{\sqrt{16}}{\sqrt{49}}=\frac{4}{7}
$$

- $\sqrt{72}=\sqrt{2 \cdot 2} \quad \sqrt{3 \cdot 3} \cdot \sqrt{2}$
- $=2 \cdot 3 \sqrt{2}$
- $=6 \sqrt{2}$

Square root of quotient (division, fraction)

$$
\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{9}}=\frac{\sqrt{5}}{3}
$$

Not simplified, because a fraction is under the radical sign

Square root of quotient (division, fraction)
$\sqrt{\frac{7}{3}}=\frac{\sqrt{7}}{\sqrt{3}}=\frac{\sqrt{7}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{7 \cdot 3}}{\sqrt{3 \cdot 3}}=\frac{\sqrt{21}}{3}$
Not simplified, because a fraction is under the radical sign

Also not simplified because there is a radical in the denominator

Square root of quotient (division, fraction)
$\sqrt{\frac{3}{20}}=\frac{\sqrt{3}}{\sqrt{4 \cdot 5}}=\frac{\sqrt{3}}{2 \sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=\frac{\sqrt{3 \cdot 5}}{2 \sqrt{5 \cdot 5}}=\frac{\sqrt{15}}{10}$
Not simplified, because a fraction is under the radical sign

Also not simplified because there is a radical in the denominator

Simplifying a radical quotient

$\frac{8-\sqrt{28}}{10}=\frac{8}{10}-\frac{\sqrt{28}}{10}=\frac{4}{5}-\frac{\sqrt{4 \cdot 7}}{10}=\frac{4}{5}-\frac{2 \sqrt{7}}{10}$

$$
=\frac{4}{5}-\frac{\sqrt{7}}{5}=\frac{4-\sqrt{7}}{5}
$$

- FIRST write each term of numerator over the denominator!!
- Reduce each fraction and simplify radical
- Can then rewrite over single denominator if you choose: doesn't really matter

Square Root Solutions for

Quadratic Equations

- Section 9.4
- Homework due on quiz day for chapter 9
- November 3, next Wednesday

i is the square root of -1

- Factor out from negative radicands FIRST
- The proceed to simplify the root
- When solving equations, use both roots
- \pm sign: plus or minus
- Write + , then underline it with the -
- If results has \pm radical, ok to leave \pm
- If result is \pm a value, add or subtract value from the rest, and get two answers

