$x^{2}+2 x$

- Factors of polynomials are not always binomials
- $(x \cdot x)+(2 \cdot x)$
- There is a common factor to each term: x
- ($x \cdot x$) $+(2 \cdot x)=x(x+2)$ 'undistribute'
- Always look for common factors

SECTION 8.2: GREATEST COMMON FACTOR, FACIOR BY GROUPING

Find common factors in each
expression

- 3x+21
- $8 x^{2}-6 x$
- $6 x^{3}+12 x^{2}$
- $20 x^{2}+35 x$
- $14 x^{3}-21 x^{2}$

Some trinomials have terms with common factors

- $2 x^{2}+14 x+24$
- $36 x+4 x^{3}-24 x^{2}$
- Write in rank order!!

Sometimes you aren't done when

 you think you are!- $4 x^{2}-36$
- $4\left(x^{2}-9\right)$
- $4(x-3)(x+3)$

Polynomial with 'opposite' factor

- $-5 x^{2}+30 x-40$
- $-5\left(x^{2}-6 x+8\right)$
- Because it's really hard to keep track of leading negative when factoring binomial
- $-5(x-4)(x-2)$

Polynomial with 'opposite' factor

- $-x^{2}+49$
- $-1\left(x^{2}-49\right)$ is easier to factor
- Difference of two squares
- Recognize it: know solution!!

Factor by grouping

- $10 x^{2}-5 x+6 x-3$
- $\left(10 x^{2}-5 x\right)+(6 x-3)$
- $5 x(2 x-1)+3(2 x-1)$
- Not yet completely factored!
- $(5 x+3)(2 x-1)$
- Check by FOIL or calculator table

Factor by grouping

- Sometimes you can break middle term into a sum to factor by grouping
- $3 x^{2}+11 x+8$
- $3 x^{2}+3 x+8 x+8$
- $\left(3 x^{2}+3 x\right)+(8 x+8)$
- $3 x(x+1)+8(x+1)$
- $(3 x+8)(x+1)$

Factor by grouping

- Sometimes you can break middle term into a sum to factor by grouping
- $3 x^{2}+14 x+8$
- $3 x^{2}+12 x+2 x+8$
- $\left(3 x^{2}+12 x\right)+(2 x+8)$
- $3 x(x+4)+2(x+4)$
- $(3 x+2)(x+4)$

