

SECTION 8.2: GREATEST COMMON FACTOR, FACTOR BY GROUPING

x²+2x

- Factors of polynomials are not always binomials
- (x·x)+(2·x)
- There is a common factor to each term: x
- $(x \cdot x) + (2 \cdot x) = x(x+2)$ 'undistribute'
- Always look for common factors

Find common factors in each expression

- 3x+21
- 8x²-6x
- 6x³+12x²
- 20x²+35x
- 14x³-21x²

Some trinomials have terms with common factors

- 2x²+14x+24
- 36x+4x³-24x²
- Write in rank order!!

Sometimes you aren't done when you think you are!

- 4x²-36
- 4(x²-9)
- 4(x-3)(x+3)

Polynomial with 'opposite' factor

- -5x²+30x-40
- -5(x²-6x+8)
- Because it's really hard to keep track of leading negative when factoring binomial
- -5(x-4)(x-2)

Polynomial with 'opposite' factor

- -x²+49
- -1(x²-49) is easier to factor
- Difference of two squares
- Recognize it: know solution!!

Factor by grouping

- 10x²-5x+6x-3
- $(10x^2-5x)+(6x-3)$
- 5x(2x-1)+3(2x-1)
- Not yet <u>completely</u> factored!
- (5x+3)(2x-1)
- Check by FOIL or calculator table

Factor by grouping

- Sometimes <u>you</u> can break middle term into a sum to factor by grouping
- 3x²+11x+8
- 3x²+3x+8x+8
- $(3x^2+3x)+(8x+8)$
- 3x(x+1)+8(x+1)
- (3x+8)(x+1)

Factor by grouping

- Sometimes <u>you</u> can break middle term into a sum to factor by grouping
- 3x²+14x+8
- 3x²+12x+2x+8
- (3x²+12x)+(2x+8)
- 3x(x+4)+2(x+4)
- (3x+2)(x+4)