Sections 7.1, 7.2:
Sums, differences, products of polynomials
CHAPTER 7: POLYNOMALS

## Quiz results

- Average 73\% high score 100\%
- Problems:
- Keeping track of negative signs
-     - x - = +
- $-\div-=+$
- Function notation
- $f(x) \sim y$ : the result of the input
- x is the input
- Retakes can be done up to 11 AM Oct. 11


## Sum

- The result of adding
- The sum of two positive values is a positive
- The sum of two negative values is a negative
- When the values are different signs
- Find the difference
- Use the sign of the one with the larger absolute value


## Product

- The result of multiplication of factors
- Product of two positives is positive
- Product of two negatives is positive
- If signs are opposite, the product is negative


## Term

- A constant, a variable or a product of a constant and one or more variable factors
- Terms are separated from one another by addition
- Subtraction in an expression or equation needs to be interpreted as adding a negative term:
- Change its sign and use adding rules.


## Monomial

- Single term
- May be product of a constant and one or more variables
- Variables may be raised to powers (exponents)
- Absence of a numeric constant implies the constant is 1



## Polynomial degree

- The greatest exponents in any term
- Add up the values of the exponents in each term
- $4 x^{3} y^{2}+2 x^{2} y^{2}+9 x y^{3}$
- $1^{\text {st }}$ term: $5^{\text {th }}$ degree
- $2^{\text {nd }}$ term: $4^{\text {th }}$ degree
- $3^{\text {rd }}$ term: $4^{\text {th }}$ degree
- Fifth degree polynomial


## Terms are made of factors

- Numeric factor: Coefficient
- Variable factors represented by letters


## "Like Terms"

- Have exactly the same variable set
- Combine the coefficients (numeric factors) by addition
- Recall that the term has a sign
- Positive
- Negative
- Combine by addition rules


## Quadratic expression or function

- Second degree polynomial
- $f(x)=2 x^{2}+4 x-3$
- Recall $f(x)$ is the function, equivalent to the output
- $x$ is the input: example $x=3$
- $\mathrm{f}(3)=2(3)^{2}+4(3)-3=2(9)+12-3=27$



## Adding functions

- $f(x)=2 x^{2}+4 x-3$
- $g(x)=-3 x^{2}+9 x-7$
- $(\mathrm{f}+\mathrm{g})(\mathrm{x})=2 \mathrm{x}^{2}+4 \mathrm{x}-3-3 \mathrm{x}^{2}+9 \mathrm{x}-7$
- Add like terms: watch the signs!!
- Do it vertical, not on one line


## Subtracting functions

- $f(x)=2 x^{2}+4 x-3$
- $g(x)=-3 x^{2}+9 x-7$
- $(\mathrm{f}-\mathrm{g})(\mathrm{x})=2 \mathrm{x}^{2}+4 \mathrm{x}-3-\left(-3 \mathrm{x}^{2}+9 \mathrm{x}-7\right)$
- Change every sign of function being subtracted!! Then add, watching signs
- Do it vertical, not on one line
- $2 x^{2}+4 x-3$
$\frac{-+3 x^{2}-9 x+7}{5 x^{2}-5 x+4}$
$\frac{+-x^{2}+9 x-7}{-x^{2}+13 x-10}$


## Multiplying monomials (finding products)

- Multiply numeric coefficients
- Combine exponents on like variables
- $x^{2} \cdot x^{3}=$
- Write factors without exponents to 'see' what
the exponent means
Multiplying polynomial by
monomial
- $\overline{2(3+5)}=2(8)=16$, right?
- "Distribute" multiplication over addition
- $2(3)+2(5)=6+10=16$, same thing
- $2 x\left(3 x^{2}+5 x\right)=6 x^{3}+10 x^{2}$
- same thing with variables,
- just now terms are not 'like' so you cannot combine them


## Product of binomials

- $(2+3)(2+5)=(5)(7)=35$
- Multiply second factor by each term of first factor, then distribute
- $(2+3)(2+5)=2(2+5)+3(2+5)=14+21=35$
- With variables: $(x+3)(x+5)=$
- $x(x+5)+3(x+5)=$
- $x^{2}+5 x+3 x+15=$
- Combine like terms: $x^{2}+8 x+15$

Product of binomials

- F.O.I.L. method
- Label terms
- Firsts, Lasts, Outsides, Insides
- F L F L
- $(x+3)(x+5)$

0010

- Multiply: draw line, write product, draw, write.
- Firsts X
- Outsides $+5 x$
- Insides +3x
- Lasts +
- Combine like terms: $x^{2}+8 x+15$


## Products of higher degree

polynomials

- Be very methodical
- Draw line for the product of two terms
- Write the product of those terms
- Draw another line for product of terms
- Write the product of those two terms
- Etc: DO NOT DRAW ALL THE LINES AND GO BACK TO FIND THE PRODUCTS!!
- YOU WILL GET LOST!!

