

Past Glacial Ages

- Pliocene-Pleistocene
 - Ice in Antarctica starting about 40 m.y.a.
 - Widespread N. Hemisphere ice about 3 mya
 - Advances every 40,000 to 100,000 years
- Karoo Ice Ages
 - -260 to 350 mya
 - Lasted 90 million years
 - Wegener's evidence of continental movement

Location of 300 MY Continental Glaciation with continents located 300 mya North America Antarctica Copyright © 2000 Pearson Prefice Hall Inc.

Past Glacial Ages

- Andean-Saharan Ice Ages
 - -430 to 460 mya
 - Lasted 30 million years
- Cryogenian
 - -630 to 850 mya
 - Lasted 200 million years
 - Periods of all Earth covered with glacier
- Huronian
 - Over 2 billion years ago
 - Lasted 300 to 400 million years

Documentation

- Drift
- · Loess and marine deposits
- · Oxygen isotope ratio in shells
- Air trapped in ice—CO₂ levels

Causes

- Land mass configuration
 - High latitude land mass-Antarctica
 - High elevation in westerlies—Andes, Cascades
- Coincidence of astronomical variations of Earth in relation to Sun
 - Orbit shape: eccentricity
 - Axial tilt amount: obliquity
 - Tilt direction superimposed on orbit shape: progression of the equinox
- CO₂ levels—may be effect and not cause

Positive Climate Feedback Loops

• Ice albedo decreases temperature, increases ice. Reduced ice increases temperature

Positive Climate Feedback Loops

- Ice albedo decreases temperature, increases ice. Reduced ice increases temperature
- Glacial periods result in larger arid areas, increasing delivery of iron nutrients to sea, increasing algae productivity, lowering CO₂ levels, and temperature
- Lowering sea level will expose reefs to weathering. Reaction consumes CO₂, lowering temperature. Rising sea level has opposite effect: reef preserved, does not consume CO₂

Negative Climate Feedback Loop

 Forest die out during glacial ages, reducing mechanism to remove CO₂ from atmosphere, increasing CO₂, allowing temperature to increase

