Ocean Water, Ocean Life

- I. Physics of sea water
 - A. Composition
 - 1. Salinity
 - a. parts per thousand=permil: sea water is 35 permil
 - b. salt from dissolved mineral material and volcanic gases
 - c. dissolved matter removed by
 - 1) organisms secreting hard parts and
 - 2) chemical precipitation
 - 2. variations in salinity due to variations in water
 - a. additional water from
 - 1) precipitation
 - 2) melting ice
 - 3) runoff
 - b. water removed by
 - 1) evaporation
 - 2) formation of sea ice—polar sea salinity varies seasonally
 - c. variation from 33 permil to 38 permil, although some marginal areas
 - 1) to 42 permil (Persian Gulf) or
 - 2) 10 permil (Baltic)
 - B. Temperature
 - 1. Varies from equator to pole, and from top to bottom
 - 2. Variation with depth
 - a. in low latitudes it is warm at top, by sun energy
 - b. declines sharply at about 300 m to 1000 m: the 'thermocline'
 - c. below about 1000 m constant to sea floor: about 2° C
 - d. in high latitudes, cold and constant from surface to sea floor
 - e. mid-latitudes may have seasonal thermoclines
 - 3. change in temperature over time would affect stability of life in the sea
 - C. Density
 - 1. Affected by salinity and temperature
 - a. temperature has inverse relation to density
 - b. salinity has direct relation to density
 - c. because sea water salinity varies only slightly, temperature has a greater affect on density of sea water
 - 2. density zones with depth—
 - 'pycnocline' is change in density with depth
 - a. surface mixed zone—2% of ocean volume
 - 1) to 300 meters,
 - 2) depth varies with latitude and season
 - b. intermediate transition zone—18%: includes thermocline and pycnocline
 - c. high density zone—80%
 - 1) below 1000 m in mid latitudes
 - 2) somewhat more shallow in equatorial seas
 - 3) all high latitude sea water is high density

- D. desalinization of sea water
 - 1. Expensive,
 - a. minor source of drinking water
 - b. unlikely source of agricultural water
 - 2. Processes
 - a. distillation
 - b. membrane processes use semi-permeable membranes
 - c. freezing, chemical catalyst demineralization
- II. Dynamic Ocean
 - A. Circulation
 - 1. Surface Circulation
 - a. Related to general circulation of atmosphere
 - b. Pattern of 'gyres'
 - 1) include poleward warm current, and equatorward cool current
 - 2) North Pacific Gyre, South Pacific Gyre, North Atlantic Gyre, South Atlantic Gyre, Indian Ocean Gyre
 - 3) 'Coriolis Effect' deflects current to right in northern hemisphere, to left in southern hemisphere
 - 4) important named currents: Gulf Stream, California Current, Kuroshio Current, equatorial currents, West Wind Drift
 - c. effect on climate: ~1/4 of world heat transfer by ocean currents
 - 1) transfer of heat apparent in cold months in mid-latitudes
 - 2) cold currents apparent in tropics, and in mid-latitudes in warm months
 - d. upwelling—vertical movement of water
 - 1) winds blow surface water away from continent
 - 2) phosphates, nitrates-rich water rises from deep ocean:
 - 2. Deep Ocean Circulation—thermohaline circulation
 - a. Cold, saline polar waters sink
 - b. Moves on sea floor 500 to 200 years
 - c. Warm water moved poleward,
 - 1) draws up deep water in these areas
 - 2) this water is warmed and moves poleward

- III. Ocean life
 - A. Basis of sea life is algae—photosynthesis
 - 1. need sunlight
 - 2. provides food and oxygen for other organisms
 - B. classifications
 - 1. plankton-float
 - a. phytoplankton—plants (algae, etc)
 - b. zooplankton—consumers (animals)
 - c. most of Biosphere is plankton
 - 2. nekton-swim
 - a. confined by environment constrains of
 - 1) temperature,
 - 2) salinity,
 - 3) depth,
 - 4) density of water,
 - 5) food sources
 - b. fish
 - 1) most abundant near shore, in cold water
 - 2) some migrate between rivers and sea for reproduction
 - 3. benthos organisms
 - a. live on the bottom—surface of it or beneath bottom surface
 - b. seaweed and kelp live in shallow zones
 - c. deep sea home to organisms that do not need light
 - C. distribution—zones controlled by
 - 1. availability of sunlight
 - a. photic zone affected by clarity, depth, season, time, latitude
 - b. euphotic—good light:
 - 1) photosynthesis to about 100 m
 - 2) light to avoid predators to perhaps 1000 m
 - c. aphotic zone—no light
 - 2. distance from shore
 - a. intertidal zone—emergent from sea at times
 - b. neritic zone-
 - 1) continental shelf from intertidal zone to shelf break at beginning of continental slope
 - 2) may be photic to bottom
 - 3) abundant nutrients from land runoff
 - c. oceanic zone—open waters with less nutrients available
 - 3. water depth
 - a. pelagic zone open ocean of any depth
 - b. distinct differences of nekton to benthos organisms
 - c. distinct differences from photic to aphotic
 - d. abyssal organisms are benthos and aphotic
 - 1) high pressure of sea water due to depth
 - 2) low temperature, except at hydrothermal vents

- IV. ocean productivity-
 - A. primary from photosynthesis
 - 1. available nutrients
 - 2. solar radiation
 - a. seasonal,
 - b. latitude control
 - B. variation by latitude
 - 1. polar seas lack thermocline and pycnocline—constant supply of nutrients due to continual mixing, control due to sunlight variation
 - a. diatoms flourish in spring
 - b. copepods and krill increase after, feeding on diatoms
 - 2. tropical seas
 - a. deep sunlight penetration
 - b. permanent thermocline prevents much mixing with deeper water
 - c. nutrients depleted in surface water, resulting in low biologic productivity
 - 3. temperate seas (mid-latitude)—significant seasonal variations
 - a. winter—low productivity
 - 1) low sunlight is control
 - 2) nutrient levels high due to mixing
 - b. spring—more sunlight
 - 1) bloom of phytoplankton
 - 2) nutrient level plummets—used up!
 - c. Summer—thermocline prevents mixing, nutrients stay low
 - d. Fall-
 - 1) cooling allows thermocline to break down,
 - 2) nutrient levels increase, allow fall phytoplankton bloom
- V. ocean food relationships
 - A. trophic levels—amount of food energy consumed at a certain feeding stage
 - 1. plants consumed by herbivores—planktonic and larger
 - 2. herbivores consumed by carnivores—planktonic and larger
 - B. transfer efficiency—
 - 1. 2% sun energy absorbed by algae becomes algae structure
 - 2. remainder of energy used for its life processes
 - 3. 10% to herbivores, to primary carnivores, to top carnivores
 - C. specific web example—herring of Atlantic
 - 1. Newfoundland herring eat copepods, with diatom food
 - 2. North Sea herring more complex
- VI. Vent communities
 - A. Energy supplied by Earth heat and sulfur
 - B. Sulfur-consuming bacteria is the basis, not algae
 - C. Communities of crabs, shrimp, tube worms