- ES 106 Sea Floor Sediments, Sea Floor Tectonics,
- I. Water planet
 - A. 71% covered by sea
 - B. All 'oceans' are interconnected
 - C. Less land exposed in southern hemisphere
- II. Ocean basins—four main basins
 - A. Pacific
 - 1. $\frac{1}{2}$ of all ocean surface
 - 2. greater than area extent of all continents
 - 3. average depth 3940 m
 - 4. has deepest ocean trench in western portion—Mariana Trench
 - B. Atlantic
 - 1. ¹/₂ size of Pacific
 - 2. Narrow—bounded by continents with similar shoreline shape
 - 3. less average depth than Pacific
 - C. Indian
 - 1. depth nearly same as Atlantic
 - 2. slightly smaller than Atlantic
 - 3. bounded by land on north—mostly in southern hemisphere
 - D. Arctic
 - 1. small—7% of Pacific
 - 2. shallow— ¼ average depth of other oceans
 - E. Average elevation—Continents vs. Oceans
 - 1. continents—840 m above sea level
 - 2. oceans—3730 m below sea level: 4+ times elevation above sea level
- III. Ocean Floor
 - A. Mapping 1. Chall
 - Challenger—127,500 km voyage in 1870s
 - a. Depth-by weighted line
 - b. Salinity, temperature, clarity
 - 2. Modern depth measurements by SONAR
 - a. <u>SO</u>und <u>N</u>avigation <u>And Ranging</u>
 - b. Ping emitted is received
 - c. Distance calculated by travel time of ping
 - d. Sidescan instruments show details, not depth
 - 3. Seismic Reflection Profiles
 - a. Explosions produce sediment-penetrating sound waves
 - b. Shows information about character of sea-floor
 - 4. Satellilte Radar Altimiters
 - a. Measure height of sea surface
 - b. Gravity causes irregularities
 - 1) Higher surface over undersea mountains
 - 2) Lower surface over deep sea floor
 - c. Ability to detect small scale differences

- B. Provinces of the sea floor
 - 1. continental margin
 - a. continental shelf
 - 1) part of continental crust flooded by ocean
 - 2) narrow, gently sloping zones to about 130 m depth
 - b. drops off at continental slope
 - 1) very narrow
 - 2) markedly steeper than shelf
 - c. submarine canyons
 - 1) cut outer shelf and slope
 - 2) deliver sediment to ocean basin floor
 - 2. ocean basin floor
 - a. most is abyssal plains—flat, featureless surface
 - b. deep ocean trenches—small portion at lithosphere plate convergence
 - c. seamounts—volcanic peaks
 - d. plateaus—volcanic plains
 - 3. oceanic ridge
 - a. tectonic feature of divergent lithospheric plates
 - b. 1000 to 4000 km wide, 2000 to 3000 m high—not topographic marvel in appearance
- IV. Two types of crust: continental and oceanic
 - A. Continental
 - 1. enriched in silica, ~75%
 - 2. less dense than oceanic crust
 - a. not subducted in tectonic processes
 - b. older, thicker because it remains at surface
 - B. oceanic
 - 1. about 50% silica, about 50% iron, magnesium
 - 2. greater density than continental crust
 - a. plate convergence results in subduction
 - b. none over 180 million years old
 - C. shoreline NOT the division between them: some ocean water has flooded edges of continental crust
 - 1. amount of water in ocean basin is variable: presently 3% water is ice
 - 2. volume of ocean basin is variable
- V. Continental margins
 - A. Two types, depending on position with respect to edge of lithospheric plate
 - 1. active—edge of lithospheric plate: usually convergent plate boundary
 - 2. passive—not on edge of lithospheric plate
 - B. Active continental margins
 - 1. convergent lithospheric plates
 - 2. subduction zone
 - 3. narrow continental shelf/margin
 - 4. trench catches sediment before it reaches deep sea floor
 - 5. accretionary wedge, or not-depending on rate, age

- C. Passive Continental Margins
 - 1. Continental Shelf
 - a. Gently sloping from shoreline to ocean basin floor
 - 1) Slopes 1/10 of one degree—2 m / km
 - 2) Would look flat to observer—some exceptions
 - a) Glacial deposits from time of lowered sea level
 - b) Submarine canyons—also formed in lowered sea level
 - b. Part of continental crust—flooded by ocean
 - c. Various widths worldwide—up to 1500 km in places
 - 1) Average width 80 km
 - 2) Average depth of outer edge 130 m
 - a) Shallow enough for exploitation
 - b) Petroleum, sand and gravel, fishing
 - d. 7.5% of world ocean
 - e. Gradual subsidence of shelf results in thick sediment deposits
 - 2. continental slope: seaward edge of continental shelf
 - a. boundary of continental to oceanic crust
 - b. narrow and steep
 - 1) 20 km wide
 - 2) Average slope 5° , to + 25° in places
 - 3. continental rise—only forms where shelf is not terminated by trench
 - a. wedge of sediment beyond continental slope on deep sea floor
 - b. slightly more slope than shelf surface
 - c. 100s of km wide
 - d. Composed of coalescence of deep sea fans deposited by flows from submarine canyons
 - 4. submarine canyons
 - a. extensions of shelf valleys cut into continental margin from shelf to deep sea floor
 - b. river valleys extended onto shelf during glacial ages
 - 1) additional runoff during melting enhanced erosion
 - 2) sediment-laden water could be dense enough to flow below sea water
 - c. undersea erosion continues with sediment-laden sea water
 - 1) deposition of sediment on canyon slopes, continental shelf
 - 2) episodic downslope movements of unstable deposit
 - a) overcomes oversteepened slope
 - b) massive underwater landslide
 - c) may have trigger such as earthquake
 - 3) flow capable of scouring canyon further
 - a) 'Turbidity current' creates 'turbidite deposit'
 - i. High density due to sediment load
 - ii. Flows down the submarine canyon to deep sea floor
 - iii. Spreads and slows on exit from canyon mouth
 - a. Deposits its coarse load first
 - b. Gradually drops finer and finer material
 - c. Single bed with coarse-to-fine grain character— 'graded bedding'
 - b) May erode canyon head closer to shore, create distinctive scour marks in surface it flows over

- VI. Ocean Basin Floor
 - A. Deep sea trenches—Atlantic has only two
 - 1. At convergent lithospheric plates
 - a. Subduction zone takes oceanic plate into mantle
 - 1) Earthquakes deeper toward trench
 - 2) Volcanic activity above subducted plate
 - a) Water lowers melting temperature of hot rock
 - b) Magma \rightarrow volcanic arc: continental or oceanic island
 - b. Accretionary wedge may be massive or absent
 - 2. Mariana Trench in western Pacific
 - a. is 11,022 m deep-
 - b. explored in 1960
 - 1) by Picard and Walsh in *Trieste*
 - 2) reached 10,912 m
 - 3) saw flatfish, jellyfish, shrimp
 - B. Abyssal plains
 - 1. surface is flat—deposits of abyssal clay
 - 2. subsurface often more rugged
 - 3. more abyssal plains where there are no deep-ocean trenches along continental margin
 - C. Seamounts, guyots, oceanic plateaus
 - 1. volcanic features of deep-ocean floor
 - 2. Seamounts, Guyots
 - a. Hotspot or oceanic ridge volcanism—
 - 1) may emerge from sea surface leads to formation of Guyot
 - a) subject to wave erosion
 - b) eventual subsidence below sea surface
 - b. seamount keeps conical shape, due to lack of wave erosion
 - 3. oceanic plateaus
 - a. topographically high ocean floor composed of volcanic rock
 - b. mantle plume or deep-sea rifts discharge massive amounts of basaltic lava
- VII. Oceanic Ridge—divergent plate boundary
 - A. Description
 - 1. 70,000 km interconnected
 - 2. 20% of Earth's surface
 - a. 1000 to 4000 km wide
 - b. 2 to 3 km (2000 to 3000 m) high
 - B. Features
 - 1. Earthquake activity common, shallow
 - 2. high heat flow
 - 3. volcanic activity—basaltic, pillow lava
 - 4. rift valleys parallel to ridge axis
 - C. new oceanic crust created at ridge, older is drawn away from ridge