ES 106 Water Cycle, Groundwater, Pollution

- I. Water cycle
 - A. 22% of precipitation falls on land
 - B. 77% of water stored on land is ice
 - C. 14% of fresh water stored on land is groundwater
- II. Groundwater
 - A. drinking water source for 1/2 of US
 - B. Enters by infiltration
 - 1. soil moisture
 - 2. drains to groundwater
 - a. zone of saturation-pores filled
 - b. zone of aeration-pores contain water and air
 - c. water table—surface of zone of saturation
 - C. storage
 - 1. contained in aquifer
 - a. porous and permeable
 - b. water moves slowly
 - 2. aquitard is impermeable
 - D. movement
 - 1. slowly through small openings—water has high surface tension
 - 2. hydraulic pressure forces water toward lower pressure
 - 3. gravity draws it downward—sometimes overpowered by hydraulic pressure/hydraulic head
- III. springs
 - A. water table intersects surface
 - 1. aquitard conducts to surface
 - 2. hydraulic head pushes upward
 - B. hot springs
 - 1. heated by cooling igneous rock or geothermal gradient
 - 2. geyser special type of hot spring
 - a. hydraulic pressure of overlying water suppresses boiling
 - b. overcome with addition of heat over time
 - c. as water rises, further reduction in pressure allows more boiling
- IV. Wells
 - A. Draw water from aquifer
 - B. Zone of saturation may be depressed due to withdrawal
 - 1. drawdown of water table
 - a. cone of depression
 - b. may refill seasonally with recharge
 - c. may be permanent if aquifer compresses
 - C. artesian flow
 - 1. hydraulic pressure is above water table
 - a. flowing artesian—above well head
 - b. non-flowing artesian—rises upon intersection of water table

- V. Groundwater concerns
 - A. Withdrawal exceeds recharge in many areas
 - 1. 'mining' a non-renewable resource
 - 2. water tables in some areas drop 1 meter per year
 - 3. may not ever recharge, if aquifer has compressed
 - a. overlying land packs grains after water leaves void space
 - b. land subsidence several meters in some areas
 - B. Contamination
 - 1. organic leachate
 - a. sources
 - 1) septic tanks
 - 2) farm wastes
 - 3) sewage system failure
 - b. removal
 - 1) natural filtering by sand and gravel
 - 2) oxidation by chemicals and assimilation by organisms
 - 3) if aquifer has proper characteristics: mostly optimal porosity
 - 2. other pollution sources: road salt, fertilizer, pesticide, leaking underground tanks/pipelines, landfills, impoundment ponds
 - a. Denver: pesticide production
 - b. Minneapolis: wood preservatives
 - c. Potato production: aldecarb antifungal compound
 - 3. Nitrates: from fertilizer—blue baby syndrome: impaired hemoglobin
 - 4. VOC: solvents spilled, discarded, buried storage leaking-persistent
 - C. Cleanup of groundwater costly, difficult, mixed rate of effectiveness
- VI. Drinking water
 - A. standards Established by EPA
 - 1. milligrams per liter is parts per million
 - 2. parts per billion is milligrams per 1000 liters
 - 3. dilution is a poor solution to pollution
 - B. Purifying Drinking water
 - 1. remove dirt and bacteria
 - a. add slaked lime, aluminum sulfate to coagulate
 - b. allow to settle, filter through sand and gravel
 - 2. improve taste by aeration, also removes volatile impurities
 - 3. disinfect
 - a. Cl₂ gas—residual effect after leaving treatment
 - b. O₃ or UV light—kills bacteria and viruses, no residual effect
 - C. Other domestic water sources
 - 1. desalination of brackish water feasible on large scale
 - a. distillation
 - 1) vaporize with fuel or sun
 - 2) condense to collect water
 - 3) cost, space
 - b. reverse osmosisfresh water passes semipermeable membrane
 - 1) freshens salt water until osmotic pressure is built
 - 2) apply pressure to salty side forces fresh water out of salty

VII. Sewage treatment methods

- A. primary treatment: settling ponds removes solids
- B. secondary treatment: aerobic bacteria metabolize organic matter
 - 1. sand and gravel filter bed
 - 2. aeration encourages aerobic bacteria activity
- C. advanced treatment: filtration
 - 1. activated carbon/charcoal: removes solvents, pesticides, metals
 - 2. reverse osmosis: removes most impurities
- D. disinfect is last step
 - 1. chlorine kills bacteria, not viruses, has residual effect
 - 2. ozone, UV kills both, no residual effect
- VIII. Geologic work of groundwater
 - A. Dissolves rock: limestone more common than salt, gypsum
 - B. Caverns
 - 1. groundwater dissolved limestone along cracks, bedding planes
 - 2. calcium ions, bicarbonate ions, carbonate ions flushed away
 - 3. depositional features in caverns from these ions re-precipitating
 - a. dripstone features
 - 1) stalactites—on ceiling
 - 2) stalagmites—on ground
 - 3) columns—joined stalactites and stalagmites
 - 4) soda straws, angel wings, cave pearls
 - b. formation due to loss of dissolved CO₂ changing pH of water
 - C. Karst terrain: usually limestone land area with solution collapse of underground openings, can be on salts also
 - 1. sinkholes—collapsed caverns
 - a. Florida, Kentucky, Indiana, New Mexico
 - b. Gradual dissolution, sudden collapse
 - c. Enhanced by removal of groundwater
 - 1) Exploitation for municipal/industrial/agricultural purposes
 - 2) Mitigation of swampland for development
 - 2. typical features of karst terrain
 - a. sinkholes
 - b. disappearing streams, lack of through-flowing streams
 - c. steep-sided solution valleys
 - d. haystack buttes: common in southeastern Asia