- ES 106 Heat and Energy Transfer, Heat of Water Phase Change
- Heat 1
 - A. heat is the motion of the energy from one substance to the other
 - molecules have energy of motion (internal or thermal energy), not heat 1.
 - 2. Cold is not a quantity, it is the absence of heat
 - 3. Temperature
 - a. related to the random molecular motion of the substance
 - b. proportional to the internal energy
 - B. Heat transferred from substance with higher temperature to one with lower temperature, not from one with more heat energy to less heat energy
 - As heat is transferred, molecular energy changes 1.
 - a. May not change temperature if a phase change is occurring
 - b. Reflected in a change in temperature of the substance
 - C. Heat is measured in joules or calories
 - one calorie = 4.184 joules 1.
 - one Calorie in food is 1000 calories, really one kilocalorie 2.
- Specific Heat Capacity 11.
 - A. Quantity of heat to raise quantity of substance 1° C
 - B. calorie = heat to raise 1 gram water 1° C
 - C. water has a very large specific heat capacity
 - results in water moderating temperature 1.
 - maritime areas more mild in temperature than continental areas 2.
 - a. temperature difference from day to night
 - 1) here commonly 10 to 15° F
 - 2) east of Cascades, commonly 30-40° F
 - b. Gulf Stream carries heat to Europe
- *III*, Expansion upon heat transfer
 - A. Random motion of molecules increases
 - B. Hit one another and drive each other further apart
 - C. Different substances have different expansion rates
 - Thermocouple is a bimetal strip that flexes with temperature change 1.
 - 2. Used in thermostats to turn on and off a heating unit or cooling unit
 - liquids commonly have expansion rates greater than solids 3.
 - D. Water has strange response to temperature change
 - Melting ice, at 0 ° C, contracts as the temperature increases 1.
 - 2.
 - decreases in volume to 4 ° C, then it behaves 'normally' smallest volume at 4 ° C, and increases 9% as it solidifies 3.
 - volume decreases after it freezes, but not 9% 4.
 - a. open structured crystals have greater volume than liquid
 - b. ends of polar molecules fit together closer in random motion of liquid
 - densest water sinks to bottom of pond-4 ° C 5.
 - a. cooling occurs at surface
 - b. reaches 4°C, sinks because it is denser than water at other temperatures
 - c. all water becomes cooled to 4 ° C before further cooling occurs
 - d. further cooling results in increase in volume, decrease in density
 - e. 0° C is reached at top, and freezes from top downward

- //. Heat Transfer
 - A. Conduction
 - 1. direct contact from molecule to molecule
 - 2. metals excellent conductors—free electrons
 - 3. poor conductors
 - a. electrons tightly held: like glass
 - b. with air spaces: wool, plastic foam, snow-INSULATORS
 - B. Convection
 - 1. movement of material from one place to another
 - 2. occurs in fluids, not solids
 - 3. heated material rises due to the expansion upon heating
 - C. Radiation
 - 1. through empty space
 - 2. electromagnetic radiation
 - a. visible light from about 500°C
 - b. all objects emit thermal energy
 - 3. dark bodies absorb more than light-colored ones
 - 4. good absorbers are good emitters, and poor are poor
- V. Four common phases of matter
 - A. Solid-ice
 - B. Liquid-water
 - C. Gaseous—steam or vapor
 - D. Plasma—electrons dissociated to form independent ions
- *W.* Evaporation
 - A. Kinetic energy of fluid
 - B. Molecules bumped off surface into air
 - C. Energy leaves vessel as molecules leave vessel
 - 1. results in lowered energy
 - 2. also lowers temperature
- VII. Condensation
 - A. Molecules in air attracted to surface
 - B. Higher energy is transferred to liquid when they join it
 - C. Atmospheric system
 - 1. warm air can hold more moisture
 - a. molecules are energetic enough to not condense
 - b. saturated warm air has greater mass of water than saturated cold air
 - c. charts show grams water per kilogram of air capacity at temperatures (Lab 6, page 3)
 - 2. expansion of air creates cooling
 - a. begins to condense into droplets
 - b. 'nucleation' particles enhance this
 - 1) Dust
 - 2) Acid aerosols
 - 3) Ions
 - c. Air close to saturation will form clouds or fog if it is cooled
 - 1) Moving to cooler sea-surface area
 - 2) Moving over cooler land surfaces

- VIII. Boiling
 - A. At sea-level pressure, 100° C water forms bubbles within fluid
 - B. Energy of molecules forces liquid water apart, because their pressure is greater than the weight of the water and atmosphere above them
 - C. Pressure-cookers allow increased pressure to build in vessel—higher temperatures can be reached, reducing cooking time
 - D. Higher elevations have lower boiling temperatures because the atmospheric pressure is lower—longer cooking times
 - E. Boiling is a cooling process
 - 1. cools as the molecules leave the fluid
 - 2. temperature remains constant throughout the boiling process
 - F. Boiling can be achieved by reduction of pressure
 - 1. less energy is needed to escape fluid
 - 2. reduces temperature of the fluid
- Melting and Freezing
 - A. Bonds break upon heating of solid substances—kinetic energy of molecules exceeds bond strength
 - B. Lowering energy in liquids results in ability of molecules to attract one another and form a cohesive bond
 - C. Pure water will freeze at 0° C at sea-level air pressure
 - 1. impurities depress the freezing temperature
 - 2. the ice that forms, at first, does not contain the impurity
 - D. increase in pressure will also depress freezing temperature
 - 1. how ice skates work
 - 2. how glaciers slide
- χ Energy of phase changes
 - A. Temperature of substance does not change during phase change
 - B. Energy is absorbed by
 - 1. solid to become liquid
 - 2. liquid to become vapor: heat of vaporization
 - C. Energy is released by
 - 1. vapor to become liquid
 - 2. liquid to become solid: heat of fusion
 - D. Water energy
 - 1. 1 calorie to change 1 gram water one K (same as 1° C) without phase change
 - 2. heat of fusion
 - a. absorbed to change from solid to liquid
 - 1) 80 calories per gram
 - 2) 335 joules per gram
 - b. Same amount released to change from liquid to solid
 - 3. heat of vaporization
 - a. absorbed to change from liquid to vapor
 - 1) 540 calories per gram
 - 2) 2260 joules per gram
 - b. Same released when condensing from vapor to liquid