- I. Nature of Earth's surface
 - A. Lithosphere broken into plates that move over weak asthenosphere
 - 1. movement due to convection of heat from inner Earth to surface
 - 2. plates composed of crust and some mantle
 - 3. most plates have continental and oceanic crust on them
 - 4. interaction of edges where relative movement is apparent
 - a. divergent
 - 1) pressure release allows underlying asthenosphere to melt and fill in
 - 2) creates basaltic rock
 - b. convergent
 - 1) oceanic crust can be forced down into mantle--subducted
 - 2) plates carrying continental crust too buoyant to subduct
 - c. lateral ('transform') boundaries where plates slide past one another
 - B. Features of ocean basins
 - 1. much is expansive flat areas—abyssal plains
 - 2. deep ocean trenches where sea floor is bent by subduction
 - a. narrow zones bordered by young mountain ranges
 - b. subduction creates uplift of these by generation of magma
 - 3. oceanic ridge system formed at divergent boundaries
 - a. broad, gentle uplift may or may not be in center of basin
 - b. interconnected to form largest volume of mountain range on Earth—70,000 km long
 - C. Features of continents
 - 1. shoreline a coincidence of volume of ocean basin and amount of liquid water
 - a. actual boundary between oceanic basin and continents due to type of crust upon lithosphere plate
 - b. sea water laps up onto continental surfaces in zones of various widths
 - c. 40% of Earth's surface is continental, although about ¼ of this is covered with sea water at present
 - 2. Mountain belts rise high above average elevation of continents
 - a. Two major zones
 - 1) Circum-Pacific belt
 - 2) Alpine-Himalayan chain
 - b. Both result of lithospheric plate convergence
 - 3. continental shield composed of remnants of ancient mountain belts
 - a. folded crystalline rock
 - b. stable, not near lithosphere plate boundaries
 - 4. stable platform
 - a. has thin veneer of sedimentary rock deposited on them
 - b. may be only fundamental difference to shield

- II. Earth is a system, with the spheres continually interacting
 - A. Parts are linked, and action in one changes another
 - B. Cycles repeat motion over short or enormous lengths of time
 - C. Energy for system
 - 1. External—provided by Sun
 - 2. Internal—original heat of gravitational contraction, and by radioactive decay
- III. Matter is composed of atoms—smallest particle that retains properties
 - A. Atoms—
 - 1. composed of 'subatomic particles— three fundamental ones
 - a. protons
 - 1) have mass ~ 1 atomic mass unit
 - 2) have positive electrical charge
 - b. neutrons
 - 1) have mass ~ 1 atomic mass unit
 - 2) have no electrical charge
 - c. electrons
 - 1) have mass of ~1/2000 atomic mass unit
 - 2) have negative electrical charge
 - 2. structure of atom
 - a. nucleus contains protons and neutrons—subequal numbers
 - 1) number of protons determines the element
 - 2) number of neutrons may be different in different atoms of the same element—leading to different 'isotopes
 - a) most isotopes are stable
 - b) unstable isotopes are 'radioactive', and disintegrate over time
 - i. in a certain length of time, one half of the atoms of an unstable isotope will decay into another substance
 - ii. this length of time is the 'half-life; of the isotope
 - a. half-life is constant for an isotope
 - b. can be used to determine age of material, by measuring how much of the 'daughter' and 'parent'
 - b. electrons surrounding in cloud
 - 1) occur on average in more likely positions
 - 2) called 'shells', which have energy levels
 - 3) outermost shell are 'valence electrons,
 - a) responsible for reactions with other atoms
 - b) full shells are not reactive
 - i. first shell can contain 2 electrons
 - ii. successive outer shells can contain 8 electrons
 - c. atom is electrically neutral when it has the same number of electrons and protons

- IV. Periodic table of elements
 - A. Each atom is represented by a letter symbol-
 - 1. one or two letters
 - a. capitalize the first letter,
 - b. do NOT capitalize a second letter if present
 - 2. letters often initials in a foreign or even obsolete language, for the element or a major substance that contains the element
 - B. Arranged in rows, or 'periods' according to atomic number, increasing mass in each succeeding row
 - C. Columns are called 'groups'
 - 1. determined by number of valence electrons
 - a. same number of valence electrons results in similar properties
 - b. full shells of electrons are not reactive with other elements
 - c. most atoms lose, gain or share electrons with other atoms in order to attain a 'full-shell' electron configuration
 - 1) elements gaining or losing electrons become 'ions'
 - a) gaining electrons results in negative charge—'anion'
 - b) losing electrons results in positive charge—'cation'
 - 2. groups—the columns
 - a. far right—Noble Gases have full electron shells
 - b. next to far right—Halogens: missing one electron of a full shell
 - c. far left—Alkali Metals: single electron in outer shell
 - d. next to far left—Alkaline Earth Metals: two electrons in outer shell
 - D. Minerals are composed of bonded elements
 - 1. naturally occurring inorganic solid with atoms in orderly internal arrangement (crystalline structure) and a definite chemical composition (that can vary within limits)
 - 2. most minerals in Earth's crust are silicates
 - a. compounds containing oxygen and silicon
 - b. building block is the 'silica tetrahedron'—one oxygen, four silicon
 - E. Elemental structure can be shown with diagrams of electron shells
 - 1. 'Bohr diagrams' named after Niels Bohr, who presented the hypothesis of electrons filling shells
 - 2. Show element with its symbol, and arcs indicating the electron shells
 - a. First shell filled with two electrons-e²⁻
 - b. Successive shells filled with eight electrons
 - c. Number of arcs corresponds to the row number of element in the periodic table

- F. Electron dot-diagrams are useful for predicting bonding of elements dots surrounding the element represent its valence electrons
 - 1. Show how elements bond by filling or emptying dot shell
 - 2. become ions with dots, charges and electrons
 - a. Ca-->Ca²⁺ + 2e⁻
 - b. Br + e⁻ -->Br⁻
 - c. Show ionic bonding reactions by transfer of electrons only
 - 3. Covalent bonds share electrons
 - a. Show unfilled shells on left
 - b. Show sharing of electrons on right
 - c. CI+CI-->Cl₂
 - d. Electrons shared equally by same type of atom-nonpolar
 - e. Different types of atoms, resulting in a molecule that has 'polarity', or is 'polar' (like a magnet has poles)
- V. Molecules
 - A. Electron dot-diagrams are useful for predicting bonding of elements—
 - 1. Show how elements bond by filling or emptying dot shell
 - 2. become ions with dots, charges and electrons
 - a. Ca-->Ca²⁺ + 2e⁻
 - b. Br + e⁻ -->Br⁻
 - c. Show ionic bonding reactions by transfer of electrons only
 - B. Naming Compounds
 - 1. Cations take on their element name, plus 'ion'
 - 2. Anions names derive from their element name
 - a. change ending to 'ide'
 - b. plus 'ion'
 - 3. put two names together, cation first, anion after
 - C. formulas of ionic compounds
 - 1. find charges of ions from location in periodic table
 - 2. combine so charges cancel to zero—electrically neutral compound
 - 3. book states to crossover the charge amounts into subscripts—works