ES 106 Glaciers and Ice Ages

- I. Glacier thick mass of ice accumulated over years, decades, centuries A. Function of recrystallization of fallen snow
 - B. Types
 - 1. alpine—valley:
 - a. high elevations worldwide
 - b. piedmont-coalescence of valley glaciers in lowlands
 - 2. ice sheets—presently Antarctica and Greenland
 - a. Antarctica is 4300 m thick
 - b. Contains 2/3 of fresh water and 4/5 of ice
 - c. ice cap—smaller than sheets
 - C. Plastic flow from highlands, or from central accumulation area
 - 1. upper surface brittle: cracks into crevasses
 - 2. sides affected by friction: center moves faster
- II. budget of a glacier
 - A. snow falls: stays or leaves
 - 1. accumulation zone: snow stays
 - a. more snowfall than loss due to evaporation, melting, calving
 - b. becomes glacial ice upon recrystallization
 - 2. wastage zone: snow leaves
 - a. loss exceeds accumulation—'ablation'
 - 1) melting
 - 2) evaporation
 - 3) calving into icebergs into the sea
 - a) iceberg mostly submerged
 - b) navigation hazard in high mid-latitudes
 - b. divided from accumulation zone at the 'snowline'
 - B. advance vs. retreat
 - 1. advance-tip further from source area: downward or outward
 - a. increase in accumulation
 - b. increase in rate of movement
 - 2. retreat—tip closer to source area
 - a. always moving away from source area
 - b. ablation exceeding accumulation
- III. glacial erosion
 - A. striations and polish
 - 1. plucks rocks from its bed
 - 2. grinds its bed with these rocks—abrasion
 - 3. makes the rocks into rock flour
 - B. valley glacier landforms
 - 1. changes stream-carved drainage
 - a. straighter
 - b. u-shaped instead of v-shaped
 - 2. landforms include hanging valley, arête, cirque, horn

- IV. Glacial deposition
 - A. collectively called 'drift': originated with Great Flood explanation
 - 1. moraines from ice moving material
 - a. lateral, medial along valley glaciers
 - b. terminal, end in both types
 - c. continental have numerous unique landforms: drumlin, esker, kettle lakes
 - 2. outwash plains beyond reach of glacier
- V. Ice Ages-
 - A. Earth's climate oscillates between glacial and interglacial states
 - 1. glacial stage more stable than interglacial
 - 2. stable beyond predicted stability conditions, due to energy requirement to cross threshold
 - B. Characteristics of glacials and interglacials
 - 1. glacial
 - a. about every 100,000 years
 - b. 10^o C worldwide average temperature
 - c. CO₂ about 200 ppm
 - 2. Interglacial—ice remains on Greenland and Antarctica
 - a. shorter duration than glacial
 - b. 15[°] C worldwide average temperature
 - c. CO₂ about 280 ppm
 - C. Pliocene-Pleistocene
 - 1. Extensive areas of high mid-latitudes covered with ice sheets
 - a. Most recent period of 'Ice Age' shows up to 20 periods of ice advance and melting in the past 3 million years
 - b. Polar landmass of Antarctica has had ice at least 14 million years
 - 2. Area
 - a. ice extended into central Midwest, central to southern Europe, central Asia
 - b. some parts of Alaska, Siberia not ice covered—desert-like precipitation, protected from flow by mountain ranges
 - c. effects
 - 1) drift
 - 2) deranged drainage
 - 3) pluvial lakes
 - 4) changes in sea level

- D. More ancient Ice Ages
 - 1. Karoo
 - a. 260 to 350 mya
 - b. Lasted 90 million years
 - c. Wegener's evidence of continental movement
 - 2. Andean-Saharan
 - a. 430 to 460 mya
 - b. Lasted 30 million years
 - 3. Cryogenian
 - a. 630 to 850 mya
 - b. Lasted 200 million years
 - c. Periods of all Earth covered with glacier
 - 4. Huronian
 - a. Over 2 billion years ago
 - b. Lasted 300 to 400 million years
- VI. Documentation
 - A. Drift deposits
 - 1. moraine and loess
 - 2. four major intervals of ice advance
 - 3. successive advances obliterate previous deposits
 - B. loess and marine sediments show better than drift
 - 1. at least 18 (counting most recent)
 - 2. regular advances over past 2.5 million years
 - C. oxygen isotope record
 - 1. two common isotopes of oxygen
 - a. oxygen-16 and oxygen-18 are stable (not subject to decay)
 - b. have differing numbers of neutrons in nucleus gives different atomic mass
 - c. at colder temperatures, more oxygen-18 incorporated into skeletons
 - d. also, heavier oxygen water less likely to evaporate
 - 1) more oxygen-16 in vapor \rightarrow precipitation \rightarrow storage on land
 - 2) more oxygen-18 left behind in water
 - 3) reinforces the temperature effect
 - 2. oxygen isotope ratio in planktonic organisms show dozens of climate swings over past 3 million years
 - D. ice cores contain trapped air—record of carbon dioxide content

VII. Causes

- A. land mass configuration
 - 1. need high latitude land masses to accumulate ice
 - 2. high elevations in westerly wind belt help keep ice on land
- B. reinforcement of temperature changes created by changes in Earth's movement around Sun—predictable 'Milankovich Cycles'
 - 1. amount of deviation from circular orbit: eccentricity
 - a. greater eccentricity causes greater difference in seasons from northern to southern hemisphere
 - 1) more sunlight at perihelion than at aphelion
 - 2) varies between nothing, to 6% (is 1.7% at present)
 - 3) 100,000 year cycle and 400,000 year cycle
 - 4) Direction of elongation changes with time too
 - b. less results in more consistent seasons
 - 2. change in axial tilt: obliquity
 - a. degree of tilt of axis of rotation: between 22 and 24.5 $^{\circ}$
 - b. increases contrast of summer to winter temperatures
 - 1) more results in greater seasonal variation of temperatures
 - 2) less has a smaller change in seasonal temperatures
 - c. about 41,000 year period of change in obliquity
 - 3. change in direction of tilt—precession of axis
 - a. Important in its relation to the others—superimposed upon them
 - b. spin axis oriented toward Polaris at present
 - a) complete circle over 25,700 years
 - b) axial precession opposite direction from precession of obliquity, results in 19,000 to 23,000 year period
 - c) effect changes which hemisphere is closer to Sun during summer,
 - i. causing that hemisphere to have greater seasonal contrast than the other
 - c. total amount of sunlight received does not change, just the seasonal distribution of it
 - d. at present, southern hemisphere has greater seasonal contrasts, with milder seasons in north
 - 4. Data from sea sediments support the astronomical influence a. Oxygen isotope ratios in shells of marine organisms
 - 5. summary: glaciation favored by low obliquity (low seasonal contrast), high eccentricity, and precession to have land hemisphere summer at aphelion to reduce melting
- C. CO₂ levels—which may be partly a function of glaciations

VIII. Feedbacks in glacial climate system

- A. albedo-reflectance: by clouds and ice=positive feedback loop
 - 1. ice
 - a. more ice—greater albedo
 - b. greater albedo--less heating
 - c. less heating—more ice
 - 2. cloud
 - a. cloud seeds: aerosol sulfur compounds
 - b. elevated during glacial times
 - c. source: organic-algae
 - 1) more algae, more sulfur aerosols
 - 2) more sulfur aerosols, more clouds
 - 3) more clouds, more albedo and more precipitation
- B. carbon dioxide changes
 - 1. rapid, and nearly identical pattern to oxygen isotope changes
 - 2. causes
 - a. biological creation of CO₂ by photosynthesis,
 - 1) function of nutrient-utilization
 - a) high utilization, low CO₂
 - b) low utilization, high CO₂
 - 2) high productivity in glacial periods?
 - b. Shelf nutrient hypothesis: phosphate
 - 1) Nutrients supplied from rivers, removed by sedimentation
 - 2) Lowered sea levels allow deposits on shelf to be weathered, eroded, delivered to sea by rivers
 - 3) Greater phosphate availability, greater productivity, larger amount of sedimentation of CO₂ in hard parts
 - 4) However, indicators show lack of increase in phosphate
 - c. Iron fertilization hypothesis
 - 1) Iron is trace nutrient for algae
 - 2) Climate change in glacial period intensifies wind
 - 3) Brings more iron to sea in dust storms
 - d. Coral reef hypothesis
 - 1) Reef growth will increase CO₂ content of atmosphere
 - a) Coral makes calcium carbonate skeleton
 - b) Byproduct of the reaction is release of CO₂
 - 2) Flooding of shelves with rise in sea level leads to reef growth
 - 3) As reefs are weathered, CO₂ leaves atmosphere
 - 4) Unbalanced response of sea-level changes to CO₂ in atmo.
 - e. Forest cover
 - 1) Increased desert belts reduced tropical forest
 - 2) Increase in CO₂ to sea increases atmospheric CO₂ in glacial
 - 3) Negative feedback overshadowed by the positive feedbacks