- I. Air Masses
 - A. Defined: large body of air, 1600 km or more across, with similar temperature and moisture at similar altitudes
 - 1. Brings these characteristics with it as it moves to different areas
 - 2. example
 - a. Canadian continental air mass goes to Mexico
 - b. Air mass temperature changes, but brings its cold characteristics
 - 3. Boundary between air masses called 'front'
 - B. Source regions indicated by simple code-tells you what air mass is like
 - 1. Polar vs. Tropical:
 - a. Designation of temperature
 - b. capital P and capital T after the little letter
 - 1) P: cold—polar, from high latitudes
 - 2) T: warm—tropical, from low latitudes
 - 2. maritime vs. continental:
 - a. designation of moisture content
 - b. little m and little c at beginning of symbol
 - 1) m: moist-maritime: from sea
 - 2) c: dry—continental: from land
 - C. Weather due to movement of air masses
 - 1. Lake Effect snow due to movement of continental polar air mass
 - a. cold air moves over Great Lakes
 - b. acquires warmth and moisture from water of lakes
 - c. moves over cold land, and snow result of cooling of moist air
 - 2. Maritime tropical air from Gulf of Mexico, Caribbean Sea, Equatorial Atlantic Ocean
 - a. Warm, moist, unstable air moves onto North America in summer
 - b. High temperature, humidity, most of rainfall of eastern 2/3 of continent
 - 3. few continental tropical air masses affect North America
 - 4. maritime polar air masses
 - a. often originate as Siberian continental polar air masses
 - 1) gain moisture on travel across Pacific Ocean
 - 2) orographic uplift results in precipitation in intermountain west
 - b. Nor'easters are also maritime polar air masses
- II. Fronts—the 'not-mixing' of air masses
 - A. narrow bands between contrasts of temperature and moisture
 - B. slope at low angle, with warmer air above cooler air
 - C. named for type of air that is displacing the type present: idealized descriptions follow, actual weather associated with a front may vary
 - 1. warm fronts bring warm air
 - a. warm air rides over cold air in place
 - 1) ground friction inhibits movement of cold air in place
 - 2) difficult to move out of the way
 - b. gently sloping wedge of cold air carries warm air aloft
 - 1) 1:200 common—1 km up for 200 km ground distance
 - 2) adiabatic cooling creates clouds and precipitation
 - a) sequence of clouds associated with approaching warm front
 - b) cirrus to cirrostratus to alto stratus to nimbostratus
 - c) light to moderate precipitation common with warm fronts
 - c. shift in wind direction commonly indicates passage of front
 - d. designated with red lines and half-circles on advancing side

- 2. cold fronts force warm air present to ascend
 - a. steeper angle of front created by pushing warm air up-1:100
 - b. cold fronts advance faster than warm fronts
 - c. more active weather associated with cold fronts
 - 1) heavy downpours
 - 2) strong winds, gusty
 - d. designated with blue line and triangles on advancing side
- 3. occluded fronts
 - a. when cold front catches warm front
 - b. result is sudden uplift of all of the warm air present
 - c. dissipates due to lack of more warm air to lift
- III. Mid-latitude Cyclone—30^o to 60^o latitude
 - A. Large centers of low pressure moving in the westerly wind belt
 - 1. circulation inward around low pressure
 - 2. generally contain a cold front and a warm front, extending from the center of the low pressure, toward the outward edge
 - 3. convergence toward center of low, and frontal lifting create weather associated with mid-latitude cyclones
 - B. Life cycle generally lasts a week or two
 - 1. development well predicted by air mass interaction model
 - 2. initial clash of unlike air masses,
 - a. traveling in opposite direction along front
 - b. wave develops along front due to irregularities present
 - 3. wave changes surface air flow, pressure patterns
 - a. Low pressure situated at the apex of the wave
 - b. result in nearly circular isobars-cyclonic flow!
 - c. Uplift and precipitation created by
 - 1) Convergence toward low pressure
 - 2) Frontal development along unlike air masses
 - 4. cold front moves faster than warm front—catches it!
 - a. Occlusion begins as this starts to occur, from low pressure outward
 - b. Intensifies storm as this step is initiated
 - c. Forcing all warm air aloft ends mid-latitude cyclone
 - C. Passage of a mid-latitude cyclone—see figure in book
 - 1. point A
 - a. cirrus clouds when front is 1000 km away, pressure falling
 - b. 12-24 hours later, light rain begins, temperature rises, wind shifts
 - 2. point C and D
 - a. starts with warm southwesterly breezes
 - b. replaced by cooler gusty west or northwest winds
 - c. precipitation along cold front-wind shift as it passes
 - 3. point F and G
 - a. greatest intensity of storm
 - b. temperatures remain cold at surface
 - c. passage of warm air aloft results in storminess
 - D. Airflow aloft relation to cyclone-anticyclone systems
 - 1. maintains the persistence of the cyclones and anticyclones
 - 2. divergence aloft keeps cyclone from filling and dissipating
 - 3. surface air from anticyclone feeds cyclone
 - 4. convergence aloft maintains anticyclone

- IV. Cyclone
 - A. Circulating storm system
 - B. Alternative meanings
 - 1. hurricane (Most cyclones are not hurricanes)
 - a. Hurricane: defined by wind speed, area of origination
 - b. Smaller than mid-latitude cyclones (typically 600 km across)
 - c. Often have greater pressure differences from center to edge
 - 2. tornado
 - a. small (1/4 km), extremely violent cyclones
 - b. extreme pressure gradient creates incredible wind speeds
- V. Thunderstorms
 - A. Occurrence
 - 1. clouds of vertical development created by absolute or conditional instability
 - a. single cumulonimbus cloud, or clusters over large area
 - b. within tropical maritime air masses that have moved into continent, lifted by daytime heating, often shortlived
 - c. orographic or frontal lifting of warm moist air makes larger set
 - 2. characteristics
 - a. must have thunder and lightning
 - b. commonly has gusty winds, intense rainfall, hail
 - c. may also have microburst or tornado development
 - 3. statistics
 - a. 2000 thunderstorms in progress at any time
 - b. there are 6000 lightning strikes/min. worldwide
 - c. Florida has most thunderstorms per year in US
 - B. Development-need uplift of warm, moist air
 - 1. latent heat released with condensation creates unstable conditions
 - 2. cumulus stage commonly produced by daytime heating
 - 3. mature stage reached with unstable conditions leading to cooling
 - a. adiabatic expansion cools air
 - b. reaches dew-point temperature, but continues to rise
 - c. requires there to be condensation for continued cooling
 - d. downdrafts associated with consequent rainfall
 - 4. dissipation stage reached when downdrafts dominate, surface is cooled by rainfall/hail
 - C. Lightning safety considerations
 - 1. fully enclosed vehicles with windows closed conduct electricity around them—rubber tires not significant insulation from ground
 - 2. get away from high or exposed places
 - a. open fields, peaks, lakes isolated trees
 - b. towers, metal fences, flagpoles, open vehicles
 - 3. do not use electrical or plumbing fixtures inside during lighting storms
 - a. telephone, light switches, cable TV connections
 - b. faucets, shower
 - 4. If you can hear it or see it, take action!
 - a. don't' wait for rainfall
 - b. don't go out too soon--it can get you after it passes

- VI. Tornadoes—local storm of short duration associated with thunderstorms
 - A. Characteristics
 - 1. large pressure drop (to 10%) over short distance (250 m) results in extreme pressure gradient
 - 2. creates extreme wind speeds (can be over 450 km/hr!!)
 - 3. wind spirals inward, convergent lifting into parent thunderstorm
 - 4. many have multiple suction vortices circulating around central core
 - B. Occurrence
 - 1. most thunderstorms do not produce tornadoes
 - a. tornado development favored if thunderstorm complex becomes a 'mesocyclone'—vertical cylinder of rotation 3-10 km across
 - b. tornadoes associated with hurricanes, strong cold fronts
 - 2. atmospheric conditions
 - a. commonly at cold front of a mid-latitude cyclone
 - b. contrasting air masses in central US in springtime
 - 1) continental polar air meets maritime tropical air
 - 2) few topographic barriers to keep them apart
 - 3. climatology
 - a. average 1200/year in US
 - b. most occur from April to June, but can happen in any month
 - C. Development
 - 1. characteristics
 - a. wind speeds within tornado estimated up to 500 km/hr
 - b. 150 to 600 m across
 - c. Travels at average 45 km/hr across landscape-
 - 1) Ahead of cold front so
 - 2) usually from SW toward NE
 - d. Cuts path of about 10 km long for 'documented' tornadoes
 - 1) Most are weak, shortlived
 - 2) Occasional ones cause devastation in 1 km path for 150 km
 - 2. destruction
 - a. Fujita intensity scale determined by damage of strong winds
 - b. Winds cause damage, flying debris causes injuries
 - 3. forecasting
 - a. important because of potential destruction and injury
 - 1) difficult because of minute size in large weather system
 - 2) forecast of severe thunderstorms can be up to a day ahead
 - b. watches and warnings
 - 1) 'watch' alerts people to possibility
 - 2) 'warning' issued when tornado has been sighted, or is indicated on radar, indicates direction and speed of tornado
 - c. Doppler radar can detect motion of mesocyclone—its circulation!
 - 1) Sharp gradients of wind speeds can be seen
 - 2) Crescent shape in wind speed plot indicates likely tornado

VII. Hurricanes—tropical cyclones, typhoons

- A. Characteristics
 - 1. form between 5 and 20⁰ of equator, most in Pacific, north of equator
 - 2. wind speed greater than 119 km/hr
 - 3. average 600 km across, 12 km high into atmosphere (base of stratosphere)
 - 4. pressure drop from edge to center commonly 50 millibars (1.5 in Hg)
 - a. pressure gradient results in high wind speeds
 - b. convergence creates uplift
 - 5. components
 - a. eye wall of cumulonimbus towering clouds
 - 1) greatest wind speeds at eye wall
 - 2) heaviest rainfall from towering cumulonimbus there
 - b. circular shaped eye in center
 - 1) nearly windless
 - 2) weakly subsiding air not strong enough to be cloudless
 - c. trailing bands of cumulonimbus around eye wall
- B. Development
 - 1. high water temperatures in tropical ocean fuels formation
 - a. uplift creates inflow, Coriolis effect creates circulation
 - b. Cannot form within 5[°] of equator, because Coriolis is too weak
 - 2. tropical disturbances organize with rotation
 - a. release of latent heat warms storm system, enhances uplift
 - b. pressure drop at center creates pressure gradient
 - 1) increases wind speeds
 - 2) brings 'fuel': warm moist air that will lift
 - c. divergence at top of storm enhances inflow at surface
 - 3. wind speed determines what the disturbance is
 - a. tropical depression: less than 61 km/hr
 - b. +61 km/hr=tropical storm—get a name at this point
 - c. +119 km/hr—designated hurricane
 - 4. movement of storm causes it to gain or lose strength
 - a. over land or cooler water—loses energy source: diminishes
 - b. over warm water—intensifies
- C. Destruction
 - 1. loss of life has been minimized by excellent forecasting
 - 2. property damage has been rising: greater development in coastal areas
 - 3. causes of destruction
 - a. storm surge 2-3 m above tide level
 - 1) most common cause of property damage and death
 - 2) created by intense low pressure, and wind push of water
 - 3) greater impact if storm has landfall at high tide
 - b. wind damage
 - 1) greater area affected than storm surge
 - 2) poorly built structures, flying debris
 - 3) some tornadoes imbedded in hurricanes
 - c. inland flooding—100s of km from storm center
 - 1) several inches of rain even after winds subside
 - 2) outlying areas actually may benefit from rainfall