- Formation of Solar System
 - A. Nebular hypothesis
 - 1. rotating cloud of gases and dust
 - 2. collapses, heats to form Sun
 - cooling allows rocky elements to condense in inner
 - a. particles accrete to stony planets
 - b. small, warm, don't attract lighter gases
 - 4. water, methane, ammonia, carbon dioxide are ices in outer disc
 - a. accumulate with rocky elements into large bodies
 - b. greater gravity allows retention of hydrogen and helium
 - B. 8 major planets
 - 1. four inner stony, small
 - 2. four outer gas giants
 - 3. significant other bodies
 - a. asteroids
 - b. Kuiper-belt objects, which Pluto probably belongs
 - c. Miscellaneous dust, meteors, comets
- II. Earth spheres
 - A. Three major spheres
 - 1. atmosphere, thin envelope
 - 2. hydrosphere covers more than 71% of surface
 - 3. geosphere—from hydrosphere to center
 - 4. Biosphere penetrates all three.
 - a. only thin zone
 - b. has created significant changes, especially to atmosphere
 - 5. interaction has sculpted surface to what it is today
 - B. Geosphere can be divided by composition or physical properties
 - 1. three compositional divisions
 - a. crust
 - 1) least dense, thinnest, coolest
 - 2) two types: continental and oceanic
 - a) oceanic ~7 km thick, basalt, 3 g/cm³
 - b) continental ~40 km thick, granitic, 2.7 g/cm³
 - b. mantle
 - 1) 2900 km depth
 - 2) Depleted in silica compared to crustal rocks
 - 3) Upper part has density ~3.4 g/cm³
 - c. Core
 - 1) Iron-nickel alloy
 - 2) 3480 km radius
 - 3) Density ~13 g/cm³
 - 2. five divisions based on physical properties—(only one of these boundaries corresponds to composition boundary)

- a. lithosphere
 - 1) brittle, solid, broken into plates
 - 2) averages 100 km thick—from 5 to 250 km
 - 3) includes all of crust, and upper part of mantle
- b. asthenosphere
 - 1) almost at melting stage
 - a) pressure keeps it from melting completely
 - b) release in pressure allows partial melting into magma
 - 2) weak compared to overlying lithosphere
 - 3) lithosphere moves around on this slushy upper mantle zone
 - 4) to depth of 660 km
- c. lower mantle
 - 1) increase in pressure increases strength
 - 2) solid, but capable of gradual flow
 - 3) 2240 km thick
 - 4) ends where liquid of outer core begins
- d. outer core
 - 1) molten metal flows to create Earth's magnetic field
 - 2) 2260 km thick
- e. inner core
 - 1) pressure makes it solid
 - 2) 1220 km radius

III. Nature of Earth's surface

- A. Lithosphere broken into plates that move over weak asthenosphere
 - 1. movement due to convection of heat from inner Earth to surface
 - 2. plates composed of crust and some mantle
 - 3. most plates have continental and oceanic crust on them
 - 4. interaction of edges where relative movement is apparent
 - a. divergent
 - pressure release allows underlying asthenosphere to melt and fill in
 - 2) creates basaltic rock
 - b. convergent
 - 1) oceanic crust can be forced down into mantle--subducted
 - 2) plates carrying continental crust too buoyant to subduct
 - c. lateral ('transform') boundaries where plates slide past one another
- B. Features of ocean basins
 - 1. much is expansive flat areas—abyssal plains
 - 2. deep ocean trenches where sea floor is bent by subduction
 - a. narrow zones bordered by young mountain ranges
 - b. subduction creates uplift of these by generation of magma
 - 3. oceanic ridge system formed at divergent boundaries
 - a. broad, gentle uplift may or may not be in center of basin
 - b. interconnected to form largest volume of mountain range on Earth—70,000 km long

- C. Features of continents
 - 1. shoreline a coincidence of volume of ocean basin and amount of liquid water
 - a. actual boundary between oceanic basin and continents due to type of crust upon lithosphere plate
 - sea water laps up onto continental surfaces in zones of various widths
 - c. 40% of Earth's surface is continental, although about ¼ of this is covered with sea water at present
 - 2. Mountain belts rise high above average elevation of continents
 - a. Two major zones
 - 1) Circum-Pacific belt
 - 2) Alpine-Himalayan chain
 - b. Both result of lithospheric plate convergence
 - 3. continental shield composed of remnants of ancient mountain belts
 - a. folded crystalline rock
 - b. stable, not near lithosphere plate boundaries
 - 4. stable platform
 - a. has thin veneer of sedimentary rock deposited on them
 - b. may be only fundamental difference to shield
- IV. Earth is a system, with the spheres continually interacting
 - A. Parts are linked, and action in one changes another
 - B. Cycles repeat motion over short or enormous lengths of time
 - C. Energy for system
 - 1. External—provided by Sun
 - 2. Internal—original heat of gravitational contraction, and by radioactive decay