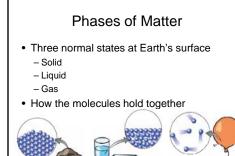
Elements and Compounds

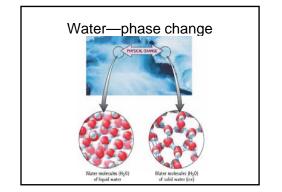

Chapter 14

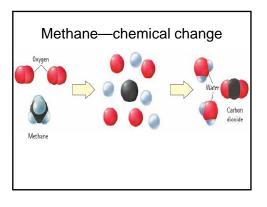
Central Science

- Study of matter
- Transformations it can make
- Basic research—how things work
- Applied research—making useful things

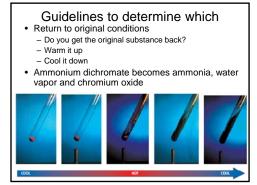
Submicroscopic world

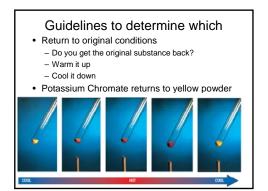
- Made of atoms
- · Link to make molecules




Properties


- What is it like?
- What phase?
- Color
- Reflectance
- Odor
- Density
- Texture ...

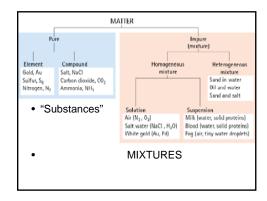



- Physical changes
 - Usually dependent on conditions
 - New substance NOT created
- Chemical changes
 - A reaction occurs
- Transforms in to something different that has new properties

Imagine that you can watch a small collection of molecules that are moving around slowly while vibrating and bumping against each other. The slower moving molecules then start to line up, but as they do so, their vibrations increase. Soon all the

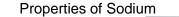
molecules are aligned and vibrating about fixed positions. What is happening?

Elements


- Substances not bonded to other types of atoms
- May be single atoms in elemental formula
- Au Gold
- Li Lithium
- May have more than one atom to make molecules of that substance
- O₂ oxygen
- N₂ nitrogen
- Or be macromolecules: diamond crystals of C

Compounds

More than one type of atom in the molecule


NH₂

- Has a Chemical Formula
- Sodium Chloride NaCl
- Ammonia
- · Subscript tells how many of each
- (Subscript 1 is omitted)

Properties of Compounds

- Very different from elements of their composition
- Sodium
- Shiny soft metal,
- melts at 97° C
- Reacts violently with water
- Chlorine
- Boils at -34° C
- Toxic gas

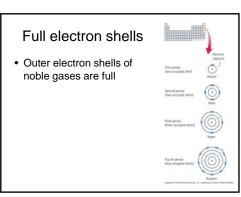
- Opaque, soft shiny metal
- Very malleable: can be cut with knife
- Tarnishes rapidly in air
- Melts at about 100°C
- Reacts violently with water, producing lye and hydrogen

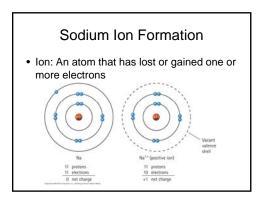
Properties of Chlorine • Yellowish gas at room temperature • Toxic to organisms at low concentrations • Reacts readily with most other elements • Characteristic odor

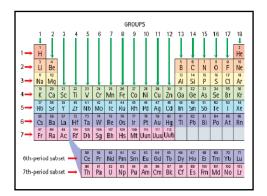
Properties of Sodium Chloride

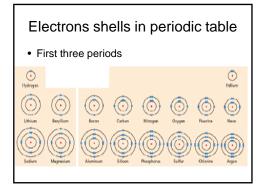
- Clear, brittle solid at room temperature
- Melts at 800° C
- Not toxic—table salt
- Not reactive with water

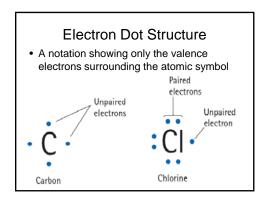
Bonding of atoms makes molecules


- The Formation of Ions and Ionic Bonds
- Types of bonds
- Metallic Bonds
- Covalent Bonds
- Polar Covalent Bonds
- Molecular Polarity and Molecular Attractions

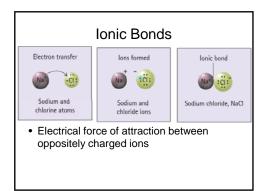

Causes of bonding

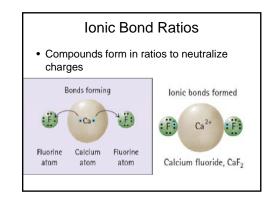

- Atoms bond together through their electrons
- Electrons behave as though they are contained within a series of seven concentric shells
- Outer shell electrons interact with electrons of other atoms
- These are the VALENCE electrons

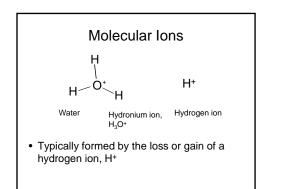

Electron Shells


- Maximum number of electrons in each shell is shown
- Inner shell fills up before next shell begins to get electrons
- Full shells are most stable
- Crypt & 20° Presen Fakalon, Ne., Juditery in Presen Askierin

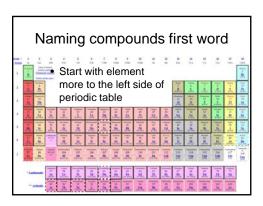
				struc	ture	for e	ectro elemental	ent
1	2	13	14	15	16	17	18	
H·							He:	
Li٠	-Be-	· B ·	٠ç٠	٠Ņ٠	:ö·	÷Ë·	:Ne:	
Na•	•Mg•	٠Å١٠	٠ŝi٠	• P •	٠Ş٠	:Ċŀ	:Är:	
ĸ٠	·Ca·	·Ġa·	·Ge·	·Äs·	:Se	:Br·	: Ķr:	
Rb•	• Sr •	• in •	٠sɨ٠	·Sb·	÷Ťe∙	: ï ·	:Xe:	
Cs•	•Ba•	٠ň٠	·Pb·	·Bi·	:Po-	:Ät•	:Řn:	

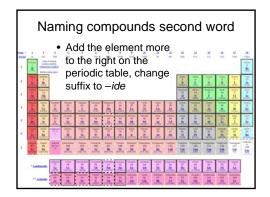

lon

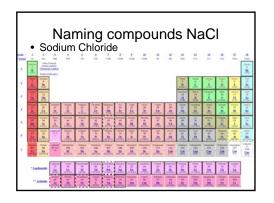

- An atom, molecule, or compound with a different number of protons and electrons
- More protons: positive CAT ION – THE t looks like a plus sign...
- More electrons: negative AN ION – Negative has an N in the prefix
- Both are all one word: anion, cation

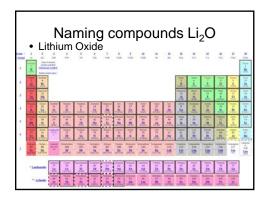

Ion formation

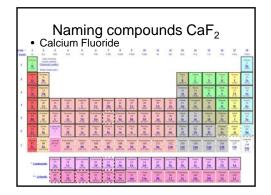
- Lose electrons
 - more protons than electrons
- positive charge
- Gain electrons
- More electrons than protons
- Negative charge
- More than one can be lost or gained
- Determine by position in periodic table


			Electron dot structure pattern				
1	2	13	14	15	16	17	18
H·							He:
Li٠	•Be•	· B ·	٠ç٠	٠Ņ٠	٠ö٠	÷Ë÷	:Ne:
Na•	•Mg•	٠Å١٠	٠ŝi٠	٠P٠	٠Ş٠	÷Ëŀ	: Är:
ĸ٠	·Ca·	·Ġa·	·Ge·	·Äs·	:Se	:Br·	: Ķr:
Rb•	٠Sr٠	٠in٠	·Sn·	·Sb·	:Te·	: ï ·	:Xe:
Cs•	•Ba•	٠ħ٠	·Pb·	·Bi·	:Po-	:Ät·	:Rn:








Groups of atoms forr	ning ions
 Molecular ions 	
 Bonds within group are cova 	lent
Hydronium ion	H₃O ⁺
Ammonium ion	NH_4^+
Bicarbonate ion	HCO3
Nitrate ion	NO ₃
Hydroxide ion	OH-
Carbonate ion	CO3 ²⁻
Sulfate ion	504 ²⁻
Phosphate ion	PO4 ³⁻

Naming different compounds of same elements

- When more than one compound is formed from differing ratios of the same atoms, a prefix is added to distinguish them
 - Carbon Dioxide
 - Carbon Monoxide

Naming Common Compounds

Some have traditional names

Water

- Ammonia
- Methane
- Propane
- etc.