Minerals and Rocks

Chapter 20

You're right, Megan, it is the perfect place. We are standing on the solid geosphere, but all the while, the hydrosphere and atmosphere are at work weathering the rock we stand on. The hydrosphere is where life on Earth began, and the atmosphere provides the oxygen animals need and the carbon dioxide plants need. Plus the atmosphere shields us from harmful UV rays. Our planet is unique in our solar system. It is our home and we need to learn more about it to be able to preserve it.

Earth System Science

- Interconnected
- Rocks and minerals
- Interior processes
- Erosion and deposition
- Water and air

Elements of Earth by weight

Minerals

- Naturally occurring
- Not composed of 'organic' molecules
- Crystalline solid
- Specific chemical composition

Crystals

Amethyst quartz

Pyrite

Shape reflects internal arrangement of atoms

- Rhodochrosite
 - Asbestos

Mineral Classification

 Crust is mostly oxygen and silicon

 Silicon always bonded to oxygen

• 'SILICATES'

92% of minerals of crust

Silicate Minerals

- Silica bonded to metals
- Aluminum, sodium, potassium, calcium
 - Feldspar: Most abundant mineral
 - 'felsic minerals'
 - Pale, less dense than ferromags
- Examples of felsic minerals
 - Feldspar
 - Quartz
 - Muscovite mica

Silicate Minerals

- Silica bonded to metals
- Iron, magnesium
 - Ferromagnesian silicates: 'ferromags'
 - Dense, dark
- Examples of ferromags
 - Amphibole
 - Pyroxene
 - Biotite mica
 - Olivine

Mineral		Idealized Formula	Cleavage	Silicate Structure
Olivine		(Mg, Fe) ₂ SiO ₄	None	Single tetrahedron
Pyroxene group (Augite)		(Mg,Fe)SiO ₃	Two planes at right angles	Single chains
Amphibole group (Hornblende)		Ca ₂ (Fe,Mg) ₅ Si ₈ O ₂₂ (OH) ₂	Two planes at 60° and 120°	Double chains
Micas	Biotite	K(Mg,Fe) ₃ AlSi ₃ O ₁₀ (OH) ₂	One plane	Sheets
	Muscovite	KAI ₂ (AISi ₃ O ₁₀)(OH) ₂		
Feld- spars	Orthoclase (Potassium feldspar)	KAISi ₃ O ₈	Two planes at 90°	Three-dimensional networks
	Plagioclase	(Ca,Na)AlSi ₃ O ₈		
Quartz		SiO ₂	None	

Hardness

- Resistance to scratching
- Compare to glass/steel, penny, fingernail

Breaking minerals

- Strength of bonds within crystals
- Cleavage
 - Some planes with weak bonding
 - Break along these

Breaking minerals

- Strength of bonds within crystals
- Fracture
 - No planar arrangement of weak bonds
 - Conchoidal or irregular

Non-silicates

- Carbonates
 - Calcite: CaCO₃
- Oxides
 - $-Fe_2O_3$, Fe_3O_4
 - tin, chromium, uranium
- Sulfides
 - Zinc, lead, mercury
 - Pyrite: FeS₂
- Native elements: Au, Cu

Minerals crystallize

- From liquid (usually) or gas (occasionally)
- Magma: molten rock
- Watery solutions

Crystallization of Magma

- Cools, atoms attracted to one another
- Arrange in orderly crystalline structures
- When very hot, low-silica forms
- Cooler, greater amounts of silica in them
- Composition of magma changes as crystallization proceeds

Crystallize from watery solutions

- Change solubility by changing physical or chemical conditions in magmatic water left
 - pH, other ion content
 - Temperature, pressure
- Chemical sedimentary rock
 - Carbonates: made by organisms, mostly
 - Increase concentration by evaporation: evaporites

Rock Types

- Igneous
- Sedimentary
- Metamorphic

- Cover 2/3 of Earth's surface
- Record conditions at time of deposition
- Include remains of organisms preserved as fossils

Sediment is derived from weathering Carried by fluid

Formed at Earth's surface

Important to reconstruct much of Earth's history

Features of sedimentary rocks

- Strata, or beds (most characteristic)
- Bedding planes separate strata
 May have important characteristics
- Size, shape and distribution of grain sizes
- Fossils

Two main types

- Rocks formed by deposition of sediment—
 Clastic
- Rocks formed by precipitation from water--Chemical (includes rocks formed by organisms)

Clastic Sediment Grains

- Particle loosened from pre-existing rock
- Transported to place of deposition
- Shape, size, and sorting of grains can tell about the environment of deposition

Lithification

Process of becoming stone

- Burial and compaction
- Precipitation of cement
- Each reduces 'pore space'

Cement

- Brought in by water
- Mineral material between grains
- Fills in pore spaces
- Commonly calcite, silica, and sometimes iron oxide

Bedding and bedding planes

• http://www.birdandhike.com/Hike/General_Info/Glossary/Gloss4.htm

Types of Clastic Rocks

- Shale (most abundant)
- Sandstone
- Conglomerate

Fossils

- Traces or remains of prehistoric life
- Are the most important inclusions
- Help determine past environments
- Used as time indicators
- Used for matching rocks from different places

Shale with plant fossils

Shale

- Composed of very fine grained sediment
- Shows obvious tendency to split along planes (fissile)
- Usually gray
- Most common type of sedimentary outcrop

Sandstone

C

Sandstone

- Composed of sand-size particles
 - Between 1/16 mm and 2 mm diameter
 - Particles may be individual mineral grains or rock fragments
 - Quartz most common type of grain
- Environments include

•Beach,

shallow sea,

•river,

sand dunes

Conglomerate

Conglomerate

- Composed of particles larger than 2 mm
- Usually particles are rock fragments

Clastic rocks

- Shale is the most common one
- Made from solid particles
- Classified by particle size

Chemical rocks

Material was once in solution and precipitates to form sediment

- Directly precipitated as the result of physical processes, or
- Through life processes (biochemical origin)

Chemical rocks Limestone

- Composed of the mineral calcite (calcium carbonate)
- Much of this calcite was precipitated by organisms
- Considered an 'organic chemical sediment' if from organisms
- Most common type of chemical rock—
- second most common type of sedimentary rock

Copyright © 2006 Pearson Prentice Hall, Inc.

Fossiliferous limestone

Coquina

Close up

Copyright © 2006 Pearson Prentice Hall, Inc.

Chemical rocks

Direct mineral precipitation from water

- Evaporites such as rock salt or gypsum
- Microcrystalline quartz (precipitated quartz) known as chert, flint, jasper, opal or agate
- Travertine (calcite) and sinter (silica) from hotspring deposits

Travertine

http://www.cis.nctu.edu.tw/~whtsai/World%20Highlights/New%20Side%20Show%20Webpages/imagepages/Turkey%202001---Travertine%20stones%20and%20water%20in%20Pamukale.html

http://www.gonomad.com/destinations/0409/hot_springs_of_the_sierras.html

http://www.paintersflat.net/saltflat.html

Rock salt

http://www.mii.org/Minerals/photochert.html

http://geomaps.wr.usgs.gov/sfgeo/geologic/stories/marin_sedimentary.html

Chert

Classification of sedimentary rocks

Detrital Sedimentary Rocks				
Texture (grain size)		Sediment Name	Rock Name	
Coarse (over 2 mm)	1000	Gravel (Rounded fragments)	Conglomerate	
		Gravel (Angular fragments)	Breccia	
Medium (1/16 to 2 mm)		Sand (If abundant feldspar is present the rock is called Arkose)	Sandstone	
Fine (1/16 to 1/256 mm)		Mud	Siltstone	
Very fine (less than 1/256 mm)		Mud	Shale	

Chemical Sedimentary Rocks				
Composition	Texture (grain size)	Rock Name		
Calcite, CaCO ₃	Fine to coarse	Crystalline Limestone		
	crystalline	Travertine		
	Visible shells and shell fragments loosely cemented Coquina			
	Various size shells and shell fragments cemented with calcite cement Fossiliferous Limestone i calcite cement			
	Microscopic shells and clay	Chalk		
Quartz, SiO ₂	Very fine crystalline	Chert (light colored) Flint (dark colored)		
Gypsum CaSO₄•2H₂O	Fine to coarse crystalline Rock Gypsu			
Halite, NaCl	Fine to coarse crystalline	Rock Salt		
Altered plant fragments	Fine-grained organic matter	Bituminous Coal		

Features of sedimentary rocks

- Porosity
- Permeability

Sedimentary rocks

Economic importance

- Coal
- Petroleum and natural gas
- Precipitation of iron and aluminum
- Deposition of gold and tin
- Sand, gravel, clay