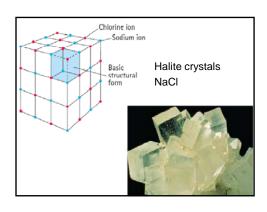
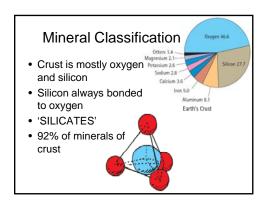

Minerals and Rocks Chapter 20

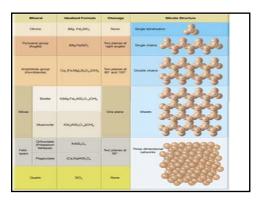
Earth System Science


- Interconnected
- · Rocks and minerals
- · Interior processes
- Erosion and deposition
- · Water and air



Minerals

- · Naturally occurring
- Not composed of 'organic' molecules
- · Crystalline solid
- Specific chemical composition



Silicate Minerals

- · Silica bonded to metals
- Aluminum, sodium, potassium, calcium
 - Feldspar: Most abundant mineral
 - 'felsic minerals'
 - Pale, less dense than ferromags
- Examples of felsic minerals
 - Feldspar
 - Quartz
 - Muscovite mica

Silicate Minerals

- · Silica bonded to metals
- Iron, magnesium
 - Ferromagnesian silicates: 'ferromags'
 - Dense, dark
- · Examples of ferromags
 - Amphibole
 - Pyroxene
 - Biotite mica
 - Olivine

Hardness

- · Resistance to scratching
- Compare to glass/steel, penny, fingernail

Breaking minerals

- Strength of bonds within crystals
- Cleavage
 - Some planes with weak bonding
 - Break along these

Breaking minerals

- · Strength of bonds within crystals
- Fracture
- No planar arrangement of weak bonds
- Conchoidal or irregular

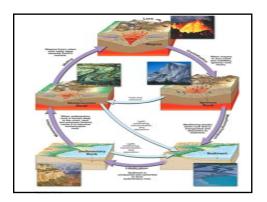
Non-silicates

- Carbonates
 - Calcite: CaCO₂
- Oxides
 - Fe₂O₃, Fe₃O₄
 - tin, chromium, uranium
- Sulfides
 - Zinc, lead, mercury
- Pyrite: FeS₂
- · Native elements: Au, Cu

Minerals crystallize

- From liquid (usually) or gas (occasionally)
- Magma: molten rock
- · Watery solutions

Crystallization of Magma


- Cools, atoms attracted to one another
- Arrange in orderly crystalline structures
- When very hot, low-silica forms
- Cooler, greater amounts of silica in them
- Composition of magma changes as crystallization proceeds

Crystallize from watery solutions

- Change solubility by changing physical or chemical conditions in magmatic water left
 - pH, other ion content
 - Temperature, pressure
- · Chemical sedimentary rock
 - Carbonates: made by organisms, mostly
 - Increase concentration by evaporation: evaporites

Rock Types

- Igneous
- Sedimentary
- Metamorphic

Sedimentary rocks

- Cover 2/3 of Earth's surface
- · Record conditions at time of deposition
- Include remains of organisms preserved as fossils

Sedimentary rocks

Sediment is derived from weathering Carried by fluid Formed at Earth's surface Important to reconstruct much of Earth's history

Sedimentary rocks

Features of sedimentary rocks

- Strata, or beds (most characteristic)
- Bedding planes separate strata
 May have important characteristics
- · Size, shape and distribution of grain sizes
- Fossils

Sedimentary rocks

Two main types

- Rocks formed by deposition of sediment— Clastic
- Rocks formed by precipitation from water- <u>Chemical</u> (includes rocks formed by organisms)

Clastic Sediment Grains

- Particle loosened from pre-existing rock
- Transported to place of deposition
- Shape, size, and sorting of grains can tell about the environment of deposition

Lithification

Process of becoming stone

- Burial and compaction
- · Precipitation of cement
- Each reduces 'pore space'

Cement

- Brought in by water
- Mineral material between grains
- Fills in pore spaces
- Commonly calcite, silica, and sometimes iron oxide

Bedding and bedding planes

Types of Clastic Rocks

- Shale (most abundant)
- Sandstone
- Conglomerate

Fossils

- Traces or remains of prehistoric life
- Are the most important inclusions
- Help determine past environments
- Used as time indicators
- Used for matching rocks from different places

Shale with plant fossils

Shale

- Composed of very fine grained sediment
- Shows obvious tendency to split along planes (fissile)
- Usually gray
- Most common type of sedimentary outcrop

Sandstone

Sandstone

- Composed of sand-size particles
 - Between 1/16 mm and 2 mm diameter
 - Particles may be individual mineral grains or rock fragments
 - Quartz most common type of grain
- Environments include

•Beach, •shallow sea, •river, •sand dunes

Conglomerate

Conglomerate

- Composed of particles larger than 2 mm
- Usually particles are rock fragments

Clastic rocks

- Shale is the most common one
- Made from solid particles
- Classified by particle size

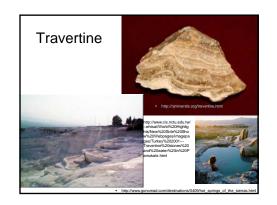
Chemical rocks

Material was once in solution and precipitates to form sediment

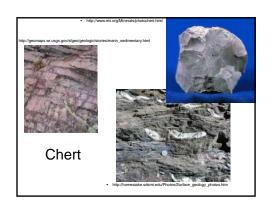
- Directly precipitated as the result of physical processes, or
- Through life processes (biochemical origin)

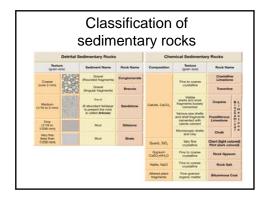
Chemical rocks Limestone

- Composed of the mineral calcite (calcium carbonate)
- Much of this calcite was precipitated by organisms
- Considered an 'organic chemical sediment' if from organisms
- Most common type of chemical rock—
- second most common type of sedimentary rock


Coquina

Chemical rocks


Direct mineral precipitation from water


- Evaporites such as rock salt or gypsum
- Microcrystalline quartz (precipitated quartz) known as chert, flint, jasper, opal or agate
- Travertine (calcite) and sinter (silica) from hotspring deposits

Features of sedimentary rocks

- Porosity
- Permeability

Sedimentary rocks

Economic importance

- Coal
- Petroleum and natural gas
- Precipitation of iron and aluminum
- Deposition of gold and tin
- Sand, gravel, clay