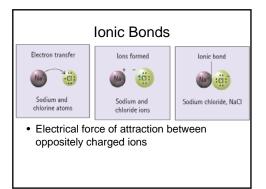
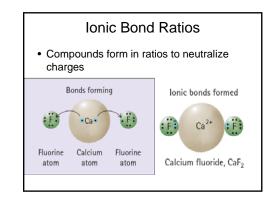
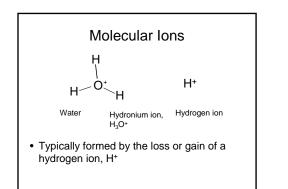

- Maximum number of electrons in each shell is shown
- Inner shell fills up before next shell begins to get electrons
- Full shells are most stable
- Equip 2 20 Free Laces, Is, parage a Free Asterna

1

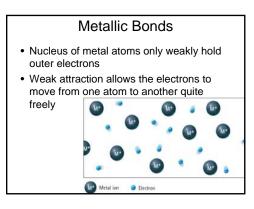
				struc	ture	for e	ectron elemer netal g	nts
1	2	13	14	15	16	17	18	
н٠							He:	
Li・	•Be•	٠ġ٠	٠ċ٠	٠Ņ٠	÷ö.	÷Ë·	:Ne:	
Na•	-Mg-	٠Å١٠	٠śi٠	· P.	٠ş٠	:ċi·	: Är:	
ĸ٠	•Ca•	٠Ġa•	·Ge·	·Ås·	:Se	:Br·	: Kr:	
Rb•	• Sr •	· in ·	٠s'n٠	·Sb·	:Te·	: ï ·	:Xe:	
Cs•	•Ba•	٠ň٠	·Pb·	·Bi·	:Po-	:Ät-	:Rn:	

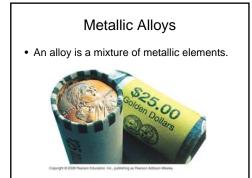

lon


- An atom, molecule, or compound with a different number of protons and electrons
- More protons: positive CAT ION – THE t looks like a plus sign...
- More electrons: negative AN ION
 Negative has an N in the prefix
- Both are all one word: anion, cation


Ion formation

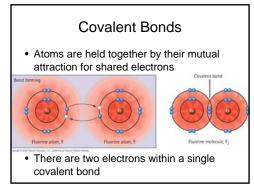
- Lose electrons
 - more protons than electrons
- positive charge
- Gain electrons
- More electrons than protons
- Negative charge
- More than one can be lost or gained
- Determine by position in periodic table

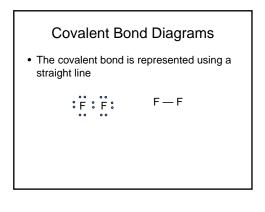

				Electron dot structure pattern			
1 Н•	2	13	14	15	16	17	18 He:
Li۰	•Be•	۰ġ۰	٠ċ٠	٠Ņ٠	٠ö٠	÷Ë•	•Ne•
Na•	-Mg-	٠Å١٠	٠śi٠	· P.	٠Ş٠	٠ċi	:Är:
ĸ٠	•Ca•	٠Ġa•	·Ge·	·Äs·	:Se.	:Br·	: Kr:
Rb•	• Sr •	· İn ·	٠Sn•	·Sb·	:Ťe•	: ï ·	:Xe:
Cs•	•Ba•	٠ň٠	·Pb·	·Bi·	:Po-	:Ät-	:Rn:

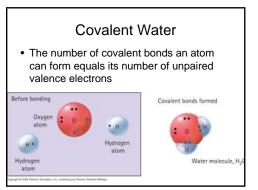

Groups of atoms for	ming ions
 Molecular ions 	
 Bonds within group are covariant 	alent
Hydronium ion	H ₃ O ⁺
Ammonium ion	NH_4^+
Bicarbonate ion	HCO3
Nitrate ion	NO_3^-
Hydroxide ion	OH-
Carbonate ion	CO3 ²⁻
Sulfate ion	504 ²⁻
Phosphate ion	PO4 ³⁻

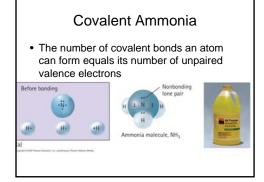
Metallic Properties

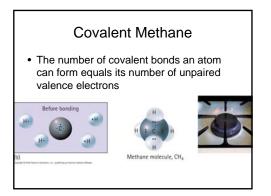
Mobility of electrons results in many properties of metals

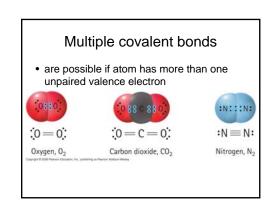

- Conductive—electrons move freely
- Shiny-electrons vibrate and reflect light
- Malleable—can move with respect to one another without breaking because electrons in constant motion
- Alloys—electrons shared between unlike types of metal atoms

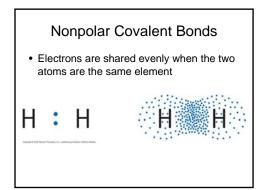


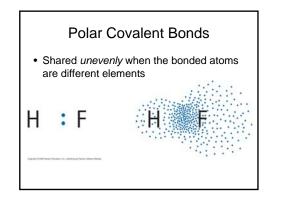

Metal Ores


- Few metals naturally occur as elements – Gold, copper, mercury
- Most occur as oxides and sulfides


 lonic compounds
 - Concentrations of these are ORE







3

Polar covalent bonds

- Closer together on the periodic table, less polar bond
- Further apart on the periodic table, more polar bond
- Molecules are called 'dipoles'
- Ionic bonds are extremely polar—but not covalent